0
Your cart

Your cart is empty

Books > Computing & IT > Applications of computing > Databases

Buy Now

Deep Learning for Beginners - A beginner's guide to getting up and running with deep learning from scratch using Python (Paperback) Loot Price: R1,201
Discovery Miles 12 010
Deep Learning for Beginners - A beginner's guide to getting up and running with deep learning from scratch using Python...

Deep Learning for Beginners - A beginner's guide to getting up and running with deep learning from scratch using Python (Paperback)

Dr. Pablo Rivas; Foreword by Laura Montoya

 (sign in to rate)
Loot Price R1,201 Discovery Miles 12 010 | Repayment Terms: R113 pm x 12*

Bookmark and Share

Expected to ship within 10 - 15 working days

Implement supervised, unsupervised, and generative deep learning (DL) models using Keras and Dopamine with TensorFlow Key Features Understand the fundamental machine learning concepts useful in deep learning Learn the underlying mathematical concepts as you implement deep learning models from scratch Explore easy-to-understand examples and use cases that will help you build a solid foundation in DL Book DescriptionWith information on the web exponentially increasing, it has become more difficult than ever to navigate through everything to find reliable content that will help you get started with deep learning. This book is designed to help you if you're a beginner looking to work on deep learning and build deep learning models from scratch, and you already have the basic mathematical and programming knowledge required to get started. The book begins with a basic overview of machine learning, guiding you through setting up popular Python frameworks. You will also understand how to prepare data by cleaning and preprocessing it for deep learning, and gradually go on to explore neural networks. A dedicated section will give you insights into the working of neural networks by helping you get hands-on with training single and multiple layers of neurons. Later, you will cover popular neural network architectures such as CNNs, RNNs, AEs, VAEs, and GANs with the help of simple examples, and learn how to build models from scratch. At the end of each chapter, you will find a question and answer section to help you test what you've learned through the course of the book. By the end of this book, you'll be well-versed with deep learning concepts and have the knowledge you need to use specific algorithms with various tools for different tasks. What you will learn Implement recurrent neural networks (RNNs) and long short-term memory (LSTM) for image classification and natural language processing tasks Explore the role of convolutional neural networks (CNNs) in computer vision and signal processing Discover the ethical implications of deep learning modeling Understand the mathematical terminology associated with deep learning Code a generative adversarial network (GAN) and a variational autoencoder (VAE) to generate images from a learned latent space Implement visualization techniques to compare AEs and VAEs Who this book is forThis book is for aspiring data scientists and deep learning engineers who want to get started with the fundamentals of deep learning and neural networks. Although no prior knowledge of deep learning or machine learning is required, familiarity with linear algebra and Python programming is necessary to get started.

General

Imprint: Packt Publishing Limited
Country of origin: United Kingdom
Release date: September 2020
Authors: Dr. Pablo Rivas
Foreword by: Laura Montoya
Dimensions: 93 x 75 x 28mm (L x W x T)
Format: Paperback
Pages: 432
ISBN-13: 978-1-83864-085-9
Categories: Books > Computing & IT > Social & legal aspects of computing > Human-computer interaction
Books > Computing & IT > Applications of computing > Databases > General
Books > Computing & IT > Applications of computing > Artificial intelligence > Neural networks
Promotions
LSN: 1-83864-085-1
Barcode: 9781838640859

Is the information for this product incomplete, wrong or inappropriate? Let us know about it.

Does this product have an incorrect or missing image? Send us a new image.

Is this product missing categories? Add more categories.

Review This Product

No reviews yet - be the first to create one!

You might also like..

Database Principles - Fundamentals of…
Carlos Coronel, Keeley Crockett, … Paperback R1,179 R1,111 Discovery Miles 11 110
Management Of Information Security
Michael Whitman, Herbert Mattord Paperback R1,406 R1,302 Discovery Miles 13 020
Safety of Web Applications - Risks…
Eric Quinton Hardcover R2,473 Discovery Miles 24 730
Big Data and Smart Service Systems
Xiwei Liu, Rangachari Anand, … Hardcover R2,086 R1,942 Discovery Miles 19 420
Temporal Data Mining via Unsupervised…
Yun Yang Paperback R1,242 Discovery Miles 12 420
Ontologies, Taxonomies and Thesauri in…
Emilia Curras Paperback R1,399 Discovery Miles 13 990
Machine Learning and Data Mining
I Kononenko, M Kukar Paperback R2,019 Discovery Miles 20 190
Open Source Database Driven Web…
Isaac Dunlap Paperback R1,228 Discovery Miles 12 280
Fundamentals of Spatial Information…
Robert Laurini, Derek Thompson Hardcover R1,539 Discovery Miles 15 390
The Data Quality Blueprint - A Practical…
John Parkinson Hardcover R1,703 Discovery Miles 17 030
Database Solutions - A step by step…
Thomas Connolly, Carolyn Begg Paperback R2,256 Discovery Miles 22 560
CompTIA Data+ DA0-001 Exam Cram
Akhil Behl, Sivasubramanian Digital product license key R1,769 R1,084 Discovery Miles 10 840

See more

Partners