![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Artificial intelligence > Neural networks
Publisher's Note: This edition from 2018 is outdated! A new second edition, completely updated for Python 3.x and its latest libraries, and TensorFlow 2.x, is now available. It features new and more practical examples executed on various platforms like TensorBoard, IBMQ, Google Dialogflow, Quirk, and more. Key Features AI-based examples to guide you in designing and implementing machine intelligence Develop your own method for future AI solutions Acquire advanced AI, machine learning, and deep learning design skills Book DescriptionArtificial intelligence has the potential to replicate humans in every field. Artificial Intelligence By Example serves as a starting point for you to understand how AI is built, with the help of intriguing examples and case studies. Artificial Intelligence By Example will make you an adaptive thinker and help you apply concepts to real-life scenarios. Using some of the most interesting AI examples, right from a simple chess engine to a cognitive chatbot, you will learn how to tackle the machine you are competing with. You will study some of the most advanced machine learning models, understand how to apply AI to blockchain and IoT, and develop emotional quotient in chatbots using neural networks. You will move on to designing AI solutions in a simple manner rather than get confused by complex architectures and techniques. This comprehensive guide will be a starter kit for you to develop AI applications on your own. By the end of this book, you will have understood the fundamentals of AI and worked through a number of case studies that will help you develop your business vision. What you will learn Use adaptive thinking to solve real-life AI case studies Rise beyond being a modern-day factory code worker Acquire advanced AI, machine learning, and deep learning designing skills Learn about cognitive NLP chatbots, quantum computing, and IoT and blockchain technology Understand future AI solutions and adapt quickly to them Develop out-of-the-box thinking to face any challenge the market presents Who this book is forArtificial Intelligence by Example is a simple, explanatory, and descriptive guide for junior developers, experienced developers, technology consultants, and those interested in AI who want to understand the fundamentals of artificial intelligence and implement it practically by devising smart solutions. Prior experience with Python and statistical knowledge is essential to make the most out of this book.
Create and unleash the power of neural networks by implementing C# and .Net code Key Features Get a strong foundation of neural networks with access to various machine learning and deep learning libraries Real-world case studies illustrating various neural network techniques and architectures used by practitioners Cutting-edge coverage of Deep Networks, optimization algorithms, convolutional networks, autoencoders and many more Book DescriptionNeural networks have made a surprise comeback in the last few years and have brought tremendous innovation in the world of artificial intelligence. The goal of this book is to provide C# programmers with practical guidance in solving complex computational challenges using neural networks and C# libraries such as CNTK, and TensorFlowSharp. This book will take you on a step-by-step practical journey, covering everything from the mathematical and theoretical aspects of neural networks, to building your own deep neural networks into your applications with the C# and .NET frameworks. This book begins by giving you a quick refresher of neural networks. You will learn how to build a neural network from scratch using packages such as Encog, Aforge, and Accord. You will learn about various concepts and techniques, such as deep networks, perceptrons, optimization algorithms, convolutional networks, and autoencoders. You will learn ways to add intelligent features to your .NET apps, such as facial and motion detection, object detection and labeling, language understanding, knowledge, and intelligent search. Throughout this book, you will be working on interesting demonstrations that will make it easier to implement complex neural networks in your enterprise applications. What you will learn Understand perceptrons and how to implement them in C# Learn how to train and visualize a neural network using cognitive services Perform image recognition for detecting and labeling objects using C# and TensorFlowSharp Detect specific image characteristics such as a face using Accord.Net Demonstrate particle swarm optimization using a simple XOR problem and Encog Train convolutional neural networks using ConvNetSharp Find optimal parameters for your neural network functions using numeric and heuristic optimization techniques. Who this book is forThis book is for Machine Learning Engineers, Data Scientists, Deep Learning Aspirants and Data Analysts who are now looking to move into advanced machine learning and deep learning with C#. Prior knowledge of machine learning and working experience with C# programming is required to take most out of this book
Build, train, and deploy intelligent applications using Java libraries Key Features Leverage the power of Java libraries to build smart applications Build and train deep learning models for implementing artificial intelligence Learn various algorithms to automate complex tasks Book DescriptionArtificial intelligence (AI) is increasingly in demand as well as relevant in the modern world, where everything is driven by technology and data. AI can be used for automating systems or processes to carry out complex tasks and functions in order to achieve optimal performance and productivity. Hands-On Artificial Intelligence with Java for Beginners begins by introducing you to AI concepts and algorithms. You will learn about various Java-based libraries and frameworks that can be used in implementing AI to build smart applications. In addition to this, the book teaches you how to implement easy to complex AI tasks, such as genetic programming, heuristic searches, reinforcement learning, neural networks, and segmentation, all with a practical approach. By the end of this book, you will not only have a solid grasp of AI concepts, but you'll also be able to build your own smart applications for multiple domains. What you will learn Leverage different Java packages and tools such as Weka, RapidMiner, and Deeplearning4j, among others Build machine learning models using supervised and unsupervised machine learning techniques Implement different deep learning algorithms in Deeplearning4j and build applications based on them Study the basics of heuristic searching and genetic programming Differentiate between syntactic and semantic similarity among texts Perform sentiment analysis for effective decision making with LingPipe Who this book is forHands-On Artificial Intelligence with Java for Beginners is for Java developers who want to learn the fundamentals of artificial intelligence and extend their programming knowledge to build smarter applications.
Explore various approaches to organize and extract useful text from unstructured data using Java Key Features Use deep learning and NLP techniques in Java to discover hidden insights in text Work with popular Java libraries such as CoreNLP, OpenNLP, and Mallet Explore machine translation, identifying parts of speech, and topic modeling Book DescriptionNatural Language Processing (NLP) allows you to take any sentence and identify patterns, special names, company names, and more. The second edition of Natural Language Processing with Java teaches you how to perform language analysis with the help of Java libraries, while constantly gaining insights from the outcomes. You'll start by understanding how NLP and its various concepts work. Having got to grips with the basics, you'll explore important tools and libraries in Java for NLP, such as CoreNLP, OpenNLP, Neuroph, and Mallet. You'll then start performing NLP on different inputs and tasks, such as tokenization, model training, parts-of-speech and parsing trees. You'll learn about statistical machine translation, summarization, dialog systems, complex searches, supervised and unsupervised NLP, and more. By the end of this book, you'll have learned more about NLP, neural networks, and various other trained models in Java for enhancing the performance of NLP applications. What you will learn Understand basic NLP tasks and how they relate to one another Discover and use the available tokenization engines Apply search techniques to find people, as well as things, within a document Construct solutions to identify parts of speech within sentences Use parsers to extract relationships between elements of a document Identify topics in a set of documents Explore topic modeling from a document Who this book is forNatural Language Processing with Java is for you if you are a data analyst, data scientist, or machine learning engineer who wants to extract information from a language using Java. Knowledge of Java programming is needed, while a basic understanding of statistics will be useful but not mandatory.
Explore TensorFlow's capabilities to perform efficient deep learning on images Key Features Discover image processing for machine vision Build an effective image classification system using the power of CNNs Leverage TensorFlow's capabilities to perform efficient deep learning Book DescriptionTensorFlow is Google's popular offering for machine learning and deep learning, quickly becoming a favorite tool for performing fast, efficient, and accurate deep learning tasks. Hands-On Deep Learning for Images with TensorFlow shows you the practical implementations of real-world projects, teaching you how to leverage TensorFlow's capabilities to perform efficient image processing using the power of deep learning. With the help of this book, you will get to grips with the different paradigms of performing deep learning such as deep neural nets and convolutional neural networks, followed by understanding how they can be implemented using TensorFlow. By the end of this book, you will have mastered all the concepts of deep learning and their implementation with TensorFlow and Keras. What you will learn Build machine learning models particularly focused on the MNIST digits Work with Docker and Keras to build an image classifier Understand natural language models to process text and images Prepare your dataset for machine learning Create classical, convolutional, and deep neural networks Create a RESTful image classification server Who this book is forHands-On Deep Learning for Images with TensorFlow is for you if you are an application developer, data scientist, or machine learning practitioner looking to integrate machine learning into application software and master deep learning by implementing practical projects in TensorFlow. Knowledge of Python programming and basics of deep learning are required to get the best out of this book.
Build and deploy powerful neural network models using the latest Java deep learning libraries Key Features Understand DL with Java by implementing real-world projects Master implementations of various ANN models and build your own DL systems Develop applications using NLP, image classification, RL, and GPU processing Book DescriptionJava is one of the most widely used programming languages. With the rise of deep learning, it has become a popular choice of tool among data scientists and machine learning experts. Java Deep Learning Projects starts with an overview of deep learning concepts and then delves into advanced projects. You will see how to build several projects using different deep neural network architectures such as multilayer perceptrons, Deep Belief Networks, CNN, LSTM, and Factorization Machines. You will get acquainted with popular deep and machine learning libraries for Java such as Deeplearning4j, Spark ML, and RankSys and you'll be able to use their features to build and deploy projects on distributed computing environments. You will then explore advanced domains such as transfer learning and deep reinforcement learning using the Java ecosystem, covering various real-world domains such as healthcare, NLP, image classification, and multimedia analytics with an easy-to-follow approach. Expert reviews and tips will follow every project to give you insights and hacks. By the end of this book, you will have stepped up your expertise when it comes to deep learning in Java, taking it beyond theory and be able to build your own advanced deep learning systems. What you will learn Master deep learning and neural network architectures Build real-life applications covering image classification, object detection, online trading, transfer learning, and multimedia analytics using DL4J and open-source APIs Train ML agents to learn from data using deep reinforcement learning Use factorization machines for advanced movie recommendations Train DL models on distributed GPUs for faster deep learning with Spark and DL4J Ease your learning experience through 69 FAQs Who this book is forIf you are a data scientist, machine learning professional, or deep learning practitioner keen to expand your knowledge by delving into the practical aspects of deep learning with Java, then this book is what you need! Get ready to build advanced deep learning models to carry out complex numerical computations. Some basic understanding of machine learning concepts and a working knowledge of Java are required.
Build simple, maintainable, and easy to deploy machine learning applications. About This Book * Build simple, but powerful, machine learning applications that leverage Go's standard library along with popular Go packages. * Learn the statistics, algorithms, and techniques needed to successfully implement machine learning in Go * Understand when and how to integrate certain types of machine learning model in Go applications. Who This Book Is For This book is for Go developers who are familiar with the Go syntax and can develop, build, and run basic Go programs. If you want to explore the field of machine learning and you love Go, then this book is for you! Machine Learning with Go will give readers the practical skills to perform the most common machine learning tasks with Go. Familiarity with some statistics and math topics is necessary. What You Will Learn * Learn about data gathering, organization, parsing, and cleaning. * Explore matrices, linear algebra, statistics, and probability. * See how to evaluate and validate models. * Look at regression, classification, clustering. * Learn about neural networks and deep learning * Utilize times series models and anomaly detection. * Get to grip with techniques for deploying and distributing analyses and models. * Optimize machine learning workflow techniques In Detail The mission of this book is to turn readers into productive, innovative data analysts who leverage Go to build robust and valuable applications. To this end, the book clearly introduces the technical aspects of building predictive models in Go, but it also helps the reader understand how machine learning workflows are being applied in real-world scenarios. Machine Learning with Go shows readers how to be productive in machine learning while also producing applications that maintain a high level of integrity. It also gives readers patterns to overcome challenges that are often encountered when trying to integrate machine learning in an engineering organization. The readers will begin by gaining a solid understanding of how to gather, organize, and parse real-work data from a variety of sources. Readers will then develop a solid statistical toolkit that will allow them to quickly understand gain intuition about the content of a dataset. Finally, the readers will gain hands-on experience implementing essential machine learning techniques (regression, classification, clustering, and so on) with the relevant Go packages. Finally, the reader will have a solid machine learning mindset and a powerful Go toolkit of techniques, packages, and example implementations. Style and approach This book connects the fundamental, theoretical concepts behind Machine Learning to practical implementations using the Go programming language.
Uncover the power of artificial neural networks by implementing them through R code. About This Book * Develop a strong background in neural networks with R, to implement them in your applications * Build smart systems using the power of deep learning * Real-world case studies to illustrate the power of neural network models Who This Book Is For This book is intended for anyone who has a statistical background with knowledge in R and wants to work with neural networks to get better results from complex data. If you are interested in artificial intelligence and deep learning and you want to level up, then this book is what you need! What You Will Learn * Set up R packages for neural networks and deep learning * Understand the core concepts of artificial neural networks * Understand neurons, perceptrons, bias, weights, and activation functions * Implement supervised and unsupervised machine learning in R for neural networks * Predict and classify data automatically using neural networks * Evaluate and fine-tune the models you build. In Detail Neural networks are one of the most fascinating machine learning models for solving complex computational problems efficiently. Neural networks are used to solve wide range of problems in different areas of AI and machine learning. This book explains the niche aspects of neural networking and provides you with foundation to get started with advanced topics. The book begins with neural network design using the neural net package, then you'll build a solid foundation knowledge of how a neural network learns from data, and the principles behind it. This book covers various types of neural network including recurrent neural networks and convoluted neural networks. You will not only learn how to train neural networks, but will also explore generalization of these networks. Later we will delve into combining different neural network models and work with the real-world use cases. By the end of this book, you will learn to implement neural network models in your applications with the help of practical examples in the book. Style and approach A step-by-step guide filled with real-world practical examples.
Leverage the power of Apple's Core ML to create smart iOS apps Key Features Explore the concepts of machine learning and Apple's Core ML APIs Use Core ML to understand and transform images and videos Exploit the power of using CNN and RNN in iOS applications Book DescriptionCore ML is a popular framework by Apple, with APIs designed to support various machine learning tasks. It allows you to train your machine learning models and then integrate them into your iOS apps. Machine Learning with Core ML is a fun and practical guide that not only demystifies Core ML but also sheds light on machine learning. In this book, you'll walk through realistic and interesting examples of machine learning in the context of mobile platforms (specifically iOS). You'll learn to implement Core ML for visual-based applications using the principles of transfer learning and neural networks. Having got to grips with the basics, you'll discover a series of seven examples, each providing a new use-case that uncovers how machine learning can be applied along with the related concepts. By the end of the book, you will have the skills required to put machine learning to work in their own applications, using the Core ML APIs What you will learn Understand components of an ML project using algorithms, problems, and data Master Core ML by obtaining and importing machine learning model, and generate classes Prepare data for machine learning model and interpret results for optimized solutions Create and optimize custom layers for unsupported layers Apply CoreML to image and video data using CNN Learn the qualities of RNN to recognize sketches, and augment drawing Use Core ML transfer learning to execute style transfer on images Who this book is forMachine Learning with Core ML is for you if you are an intermediate iOS developer interested in applying machine learning to your mobile apps. This book is also for those who are machine learning developers or deep learning practitioners who want to bring the power of neural networks in their iOS apps. Some exposure to machine learning concepts would be beneficial but not essential, as this book acts as a launchpad into the world of machine learning for developers.
Grasp the fundamental concepts of deep learning using Tensorflow in a hands-on manner Key Features Get a first-hand experience of the deep learning concepts and techniques with this easy-to-follow guide Train different types of neural networks using Tensorflow for real-world problems in language processing, computer vision, transfer learning, and more Designed for those who believe in the concept of 'learn by doing', this book is a perfect blend of theory and code examples Book DescriptionDeep learning is a popular subset of machine learning, and it allows you to build complex models that are faster and give more accurate predictions. This book is your companion to take your first steps into the world of deep learning, with hands-on examples to boost your understanding of the topic. This book starts with a quick overview of the essential concepts of data science and machine learning which are required to get started with deep learning. It introduces you to Tensorflow, the most widely used machine learning library for training deep learning models. You will then work on your first deep learning problem by training a deep feed-forward neural network for digit classification, and move on to tackle other real-world problems in computer vision, language processing, sentiment analysis, and more. Advanced deep learning models such as generative adversarial networks and their applications are also covered in this book. By the end of this book, you will have a solid understanding of all the essential concepts in deep learning. With the help of the examples and code provided in this book, you will be equipped to train your own deep learning models with more confidence. What you will learn Understand the fundamentals of deep learning and how it is different from machine learning Get familiarized with Tensorflow, one of the most popular libraries for advanced machine learning Increase the predictive power of your model using feature engineering Understand the basics of deep learning by solving a digit classification problem of MNIST Demonstrate face generation based on the CelebA database, a promising application of generative models Apply deep learning to other domains like language modeling, sentiment analysis, and machine translation Who this book is forThis book targets data scientists and machine learning developers who wish to get started with deep learning. If you know what deep learning is but are not quite sure of how to use it, this book will help you as well. An understanding of statistics and data science concepts is required. Some familiarity with Python programming will also be beneficial.
Delve into neural networks, implement deep learning algorithms, and explore layers of data abstraction with the help of TensorFlow. Key Features Learn how to implement advanced techniques in deep learning with Google's brainchild, TensorFlow Explore deep neural networks and layers of data abstraction with the help of this comprehensive guide Gain real-world contextualization through some deep learning problems concerning research and application Book DescriptionDeep learning is a branch of machine learning algorithms based on learning multiple levels of abstraction. Neural networks, which are at the core of deep learning, are being used in predictive analytics, computer vision, natural language processing, time series forecasting, and to perform a myriad of other complex tasks. This book is conceived for developers, data analysts, machine learning practitioners and deep learning enthusiasts who want to build powerful, robust, and accurate predictive models with the power of TensorFlow, combined with other open source Python libraries. Throughout the book, you'll learn how to develop deep learning applications for machine learning systems using Feedforward Neural Networks, Convolutional Neural Networks, Recurrent Neural Networks, Autoencoders, and Factorization Machines. Discover how to attain deep learning programming on GPU in a distributed way. You'll come away with an in-depth knowledge of machine learning techniques and the skills to apply them to real-world projects. What you will learn Apply deep machine intelligence and GPU computing with TensorFlow Access public datasets and use TensorFlow to load, process, and transform the data Discover how to use the high-level TensorFlow API to build more powerful applications Use deep learning for scalable object detection and mobile computing Train machines quickly to learn from data by exploring reinforcement learning techniques Explore active areas of deep learning research and applications Who this book is forThe book is for people interested in machine learning and machine intelligence. A rudimentary level of programming in one language is assumed, as is a basic familiarity with computer science techniques and technologies, including a basic awareness of computer hardware and algorithms. Some competence in mathematics is needed to the level of elementary linear algebra and calculus.
Leverage the power of machine learning and Swift programming to build intelligent iOS applications with ease Key Features Implement effective machine learning solutions for your iOS applications Use Swift and Core ML to build and deploy popular machine learning models Develop neural networks for natural language processing and computer vision Book DescriptionMachine learning as a field promises to bring increased intelligence to the software by helping us learn and analyse information efficiently and discover certain patterns that humans cannot. This book will be your guide as you embark on an exciting journey in machine learning using the popular Swift language. We'll start with machine learning basics in the first part of the book to develop a lasting intuition about fundamental machine learning concepts. We explore various supervised and unsupervised statistical learning techniques and how to implement them in Swift, while the third section walks you through deep learning techniques with the help of typical real-world cases. In the last section, we will dive into some hard core topics such as model compression, GPU acceleration and provide some recommendations to avoid common mistakes during machine learning application development. By the end of the book, you'll be able to develop intelligent applications written in Swift that can learn for themselves. What you will learn Learn rapid model prototyping with Python and Swift Deploy pre-trained models to iOS using Core ML Find hidden patterns in the data using unsupervised learning Get a deeper understanding of the clustering techniques Learn modern compact architectures of neural networks for iOS devices Train neural networks for image processing and natural language processing Who this book is foriOS developers who wish to create smarter iOS applications using the power of machine learning will find this book to be useful. This book will also benefit data science professionals who are interested in performing machine learning on mobile devices. Familiarity with Swift programming is all you need to get started with this book.
One stop guide to implementing award-winning, and cutting-edge CNN architectures Key Features Fast-paced guide with use cases and real-world examples to get well versed with CNN techniques Implement CNN models on image classification, transfer learning, Object Detection, Instance Segmentation, GANs and more Implement powerful use-cases like image captioning, reinforcement learning for hard attention, and recurrent attention models Book DescriptionConvolutional Neural Network (CNN) is revolutionizing several application domains such as visual recognition systems, self-driving cars, medical discoveries, innovative eCommerce and more.You will learn to create innovative solutions around image and video analytics to solve complex machine learning and computer vision related problems and implement real-life CNN models. This book starts with an overview of deep neural networkswith the example of image classification and walks you through building your first CNN for human face detector. We will learn to use concepts like transfer learning with CNN, and Auto-Encoders to build very powerful models, even when not much of supervised training data of labeled images is available. Later we build upon the learning achieved to build advanced vision related algorithms for object detection, instance segmentation, generative adversarial networks, image captioning, attention mechanisms for vision, and recurrent models for vision. By the end of this book, you should be ready to implement advanced, effective and efficient CNN models at your professional project or personal initiatives by working on complex image and video datasets. What you will learn From CNN basic building blocks to advanced concepts understand practical areas they can be applied to Build an image classifier CNN model to understand how different components interact with each other, and then learn how to optimize it Learn different algorithms that can be applied to Object Detection, and Instance Segmentation Learn advanced concepts like attention mechanisms for CNN to improve prediction accuracy Understand transfer learning and implement award-winning CNN architectures like AlexNet, VGG, GoogLeNet, ResNet and more Understand the working of generative adversarial networks and how it can create new, unseen images Who this book is forThis book is for data scientists, machine learning and deep learning practitioners, Cognitive and Artificial Intelligence enthusiasts who want to move one step further in building Convolutional Neural Networks. Get hands-on experience with extreme datasets and different CNN architectures to build efficient and smart ConvNet models. Basic knowledge of deep learning concepts and Python programming language is expected.
Build neural network models in text, vision and advanced analytics using PyTorch Key Features Learn PyTorch for implementing cutting-edge deep learning algorithms. Train your neural networks for higher speed and flexibility and learn how to implement them in various scenarios; Cover various advanced neural network architecture such as ResNet, Inception, DenseNet and more with practical examples; Book DescriptionDeep learning powers the most intelligent systems in the world, such as Google Voice, Siri, and Alexa. Advancements in powerful hardware, such as GPUs, software frameworks such as PyTorch, Keras, Tensorflow, and CNTK along with the availability of big data have made it easier to implement solutions to problems in the areas of text, vision, and advanced analytics. This book will get you up and running with one of the most cutting-edge deep learning libraries-PyTorch. PyTorch is grabbing the attention of deep learning researchers and data science professionals due to its accessibility, efficiency and being more native to Python way of development. You'll start off by installing PyTorch, then quickly move on to learn various fundamental blocks that power modern deep learning. You will also learn how to use CNN, RNN, LSTM and other networks to solve real-world problems. This book explains the concepts of various state-of-the-art deep learning architectures, such as ResNet, DenseNet, Inception, and Seq2Seq, without diving deep into the math behind them. You will also learn about GPU computing during the course of the book. You will see how to train a model with PyTorch and dive into complex neural networks such as generative networks for producing text and images. By the end of the book, you'll be able to implement deep learning applications in PyTorch with ease. What you will learn Use PyTorch for GPU-accelerated tensor computations Build custom datasets and data loaders for images and test the models using torchvision and torchtext Build an image classifier by implementing CNN architectures using PyTorch Build systems that do text classification and language modeling using RNN, LSTM, and GRU Learn advanced CNN architectures such as ResNet, Inception, Densenet, and learn how to use them for transfer learning Learn how to mix multiple models for a powerful ensemble model Generate new images using GAN's and generate artistic images using style transfer Who this book is forThis book is for machine learning engineers, data analysts, data scientists interested in deep learning and are looking to explore implementing advanced algorithms in PyTorch. Some knowledge of machine learning is helpful but not a mandatory need. Working knowledge of Python programming is expected.
- The author is one of the most influential AI reseachers of recent decades. - Written in an accessible language, the book provides a probing account of AI today and proposes a new narrative to connect and make sense of events that happened in the recent tumultuous past and enable us to think soberly about the road ahead. - The book is divided into ten carefully crafted and easily-digestible chapters, each grapples with an important question for AI, ranging from the scientific concepts that underpin the technology to wider implications for society, using real examples wherever possible.
Develop deep neural networks in Theano with practical code examples for image classification, machine translation, reinforcement agents, or generative models. About This Book * Learn Theano basics and evaluate your mathematical expressions faster and in an efficient manner * Learn the design patterns of deep neural architectures to build efficient and powerful networks on your datasets * Apply your knowledge to concrete fields such as image classification, object detection, chatbots, machine translation, reinforcement agents, or generative models. Who This Book Is For This book is indented to provide a full overview of deep learning. From the beginner in deep learning and artificial intelligence, to the data scientist who wants to become familiar with Theano and its supporting libraries, or have an extended understanding of deep neural nets. Some basic skills in Python programming and computer science will help, as well as skills in elementary algebra and calculus. What You Will Learn * Get familiar with Theano and deep learning * Provide examples in supervised, unsupervised, generative, or reinforcement learning. * Discover the main principles for designing efficient deep learning nets: convolutions, residual connections, and recurrent connections. * Use Theano on real-world computer vision datasets, such as for digit classification and image classification. * Extend the use of Theano to natural language processing tasks, for chatbots or machine translation * Cover artificial intelligence-driven strategies to enable a robot to solve games or learn from an environment * Generate synthetic data that looks real with generative modeling * Become familiar with Lasagne and Keras, two frameworks built on top of Theano In Detail This book offers a complete overview of Deep Learning with Theano, a Python-based library that makes optimizing numerical expressions and deep learning models easy on CPU or GPU. The book provides some practical code examples that help the beginner understand how easy it is to build complex neural networks, while more experimented data scientists will appreciate the reach of the book, addressing supervised and unsupervised learning, generative models, reinforcement learning in the fields of image recognition, natural language processing, or game strategy. The book also discusses image recognition tasks that range from simple digit recognition, image classification, object localization, image segmentation, to image captioning. Natural language processing examples include text generation, chatbots, machine translation, and question answering. The last example deals with generating random data that looks real and solving games such as in the Open-AI gym. At the end, this book sums up the best -performing nets for each task. While early research results were based on deep stacks of neural layers, in particular, convolutional layers, the book presents the principles that improved the efficiency of these architectures, in order to help the reader build new custom nets. Style and approach It is an easy-to-follow example book that teaches you how to perform fast, efficient computations in Python. Starting with the very basics-NumPy, installing Theano, this book will take you to the smooth journey of implementing Theano for advanced computations for machine learning and deep learning.
Build and run intelligent applications by leveraging key Java machine learning libraries About This Book * Develop a sound strategy to solve predictive modelling problems using the most popular machine learning Java libraries. * Explore a broad variety of data processing, machine learning, and natural language processing through diagrams, source code, and real-world applications * This step-by-step guide will help you solve real-world problems and links neural network theory to their application Who This Book Is For This course is intended for data scientists and Java developers who want to dive into the exciting world of deep learning. It will get you up and running quickly and provide you with the skills you need to successfully create, customize, and deploy machine learning applications in real life. What You Will Learn * Get a practical deep dive into machine learning and deep learning algorithms * Explore neural networks using some of the most popular Deep Learning frameworks * Dive into Deep Belief Nets and Stacked Denoising Autoencoders algorithms * Apply machine learning to fraud, anomaly, and outlier detection * Experiment with deep learning concepts, algorithms, and the toolbox for deep learning * Select and split data sets into training, test, and validation, and explore validation strategies * Apply the code generated in practical examples, including weather forecasting and pattern recognition In Detail Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognitionStarting with an introduction to basic machine learning algorithms, this course takes you further into this vital world of stunning predictive insights and remarkable machine intelligence. This course helps you solve challenging problems in image processing, speech recognition, language modeling. You will discover how to detect anomalies and fraud, and ways to perform activity recognition, image recognition, and text. You will also work with examples such as weather forecasting, disease diagnosis, customer profiling, generalization, extreme machine learning and more. By the end of this course, you will have all the knowledge you need to perform deep learning on your system with varying complexity levels, to apply them to your daily work. The course provides you with highly practical content explaining deep learning with Java, from the following Packt books: 1. Java Deep Learning Essentials 2. Machine Learning in Java 3. Neural Network Programming with Java, Second Edition Style and approach This course aims to create a smooth learning path that will teach you how to effectively use deep learning with Java with other de facto components to get the most out of it. Through this comprehensive course, you'll learn the basics of predictive modelling and progress to solve real-world problems and links neural network theory to their application
An investigation of intelligence as an emergent phenomenon, integrating the perspectives of evolutionary biology, neuroscience, and artificial intelligence. Emergence-the formation of global patterns from solely local interactions-is a frequent and fascinating theme in the scientific literature both popular and academic. In this book, Keith Downing undertakes a systematic investigation of the widespread (if often vague) claim that intelligence is an emergent phenomenon. Downing focuses on neural networks, both natural and artificial, and how their adaptability in three time frames-phylogenetic (evolutionary), ontogenetic (developmental), and epigenetic (lifetime learning)-underlie the emergence of cognition. Integrating the perspectives of evolutionary biology, neuroscience, and artificial intelligence, Downing provides a series of concrete examples of neurocognitive emergence. Doing so, he offers a new motivation for the expanded use of bio-inspired concepts in artificial intelligence (AI), in the subfield known as Bio-AI. One of Downing's central claims is that two key concepts from traditional AI, search and representation, are key to understanding emergent intelligence as well. He first offers introductory chapters on five core concepts: emergent phenomena, formal search processes, representational issues in Bio-AI, artificial neural networks (ANNs), and evolutionary algorithms (EAs). Intermediate chapters delve deeper into search, representation, and emergence in ANNs, EAs, and evolving brains. Finally, advanced chapters on evolving artificial neural networks and information-theoretic approaches to assessing emergence in neural systems synthesize earlier topics to provide some perspective, predictions, and pointers for the future of Bio-AI.
A computer that thinks like a person has long been the dream of computer designers. The author uses his 35 years of computer design experience to describe the mechanisms of a thinking computer. These mechanisms include recall, recognition, learning, doing procedures, speech, vision, attention, intelligence, and consciousness. Included are experiments that demonstate the mechanisms described. The experiments use software that the reader can download from the internet and run on his or her personal computer (PC). The software includes a large engram file containing knowledge we use on a daily basis. Additional experiments allow the reader to write and run new engrams. The computer architecture of the human brain is first described. Standard methods of computer design are next used to convert the architecture into thinking computer implementations spanning a range of performace levels. Lastly, the operation of a thinking computer is presented.
Artificial neural networks (ANNs) are computer based systems that are designed to simulate the learning process of neurons in the human brain. ANNs have been attracting great interest during the last decade as predictive models and pattern recognition. Artificial neural networks possess the ability to "learn" from a set of experimental data without actual knowledge of the physical and chemical laws that govern the system. Therefore, ANNs application in data treatment is high, especially where systems present non-linearities and complex behaviour. This book describes the application of artificial neural networks for modelling of water and wastewater treatment processes.
Gain a new perspective on how the brain works and inspires new avenues for design in computer science and engineering This unique book is the first of its kind to introduce human memory and basic cognition in terms of physical circuits, beginning with the possibilities of ferroelectric behavior of neural membranes, moving to the logical properties of neural pulses recognized as solitons, and finally exploring the architecture of cognition itself. It encourages invention via the methodical study of brain theory, including electrically reversible neurons, neural networks, associative memory systems within the brain, neural state machines within associative memory, and reversible computers in general. These models use standard analog and digital circuits that, in contrast to models that include non-physical components, may be applied directly toward the goal of constructing a machine with artificial intelligence based on patterns of the brain. Writing from the circuits and systems perspective, the author reaches across specialized disciplines including neuroscience, psychology, and physics to achieve uncommon coverage of: Neural membranes Neural pulses and neural memory Circuits and systems for memorizing and recalling Dendritic processing and human learning Artificial learning in artificial neural networks The asset of reversibility in man and machine Electrically reversible nanoprocessors Reversible arithmetic Hamiltonian circuit finders Quantum versus classical Each chapter introduces and develops new material and ends with exercises for readers to put their skills into practice. Appendices are provided for non-experts who want a quick overview of brain anatomy, brain psychology, and brain scanning. The nature of this book, with its summaries of major bodies of knowledge, makes it a most valuable reference for professionals, researchers, and students with career goals in artificial intelligence, intelligent systems, neural networks, computer architecture, and neuroscience. A solutions manual is available for instructors; to obtain a copy please email the editorial department at [email protected]. |
![]() ![]() You may like...
Martin Davis on Computability…
Eugenio G. Omodeo, Alberto Policriti
Hardcover
R4,835
Discovery Miles 48 350
The Incomputable - Journeys Beyond the…
S. Barry Cooper, Mariya I. Soskova
Hardcover
R4,304
Discovery Miles 43 040
Logic Functions and Equations…
Bernd Steinbach, Christian Posthoff
Hardcover
R3,125
Discovery Miles 31 250
Circadian Rhythms for Future Resilient…
Xinfei Guo, Mircea R Stan
Hardcover
R2,885
Discovery Miles 28 850
Proceedings of the Third International…
Emmanuel Gdoutos, Maria Konsta-Gdoutos
Hardcover
R5,625
Discovery Miles 56 250
|