![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Earth & environment > Earth sciences > The hydrosphere > Oceanography (seas)
Paleoceanography is the science dealing with the history of the oceans. Originally published in 1985, this book describes what had been found out during the previous decade about the past 100 million years of the history of the South Atlantic Ocean, thanks largely to drilling by Glomar Challenger during five expeditions in 1980. Palaeotemperature studies provided a history of climatic variations, geochemistry of carbon isotopes provided information on fertility of planktonic organisms and the intensity of oceanic overturns, while correlation of sediment character to changes in oceanic chemistry and fertility permitted interpretations of the variation of the level at which fossil skeletons became dissolved. All the authors were experts and most took part in the 1980 expeditions to the South Atlantic. This book brought together the results of the major discoveries in one volume and was the first modern regional synthesis of ocean history.
The ocean is transparent to sound where slight irregularities within the ocean cause sound fluctuations, and thus set limits on the many uses of sound in the ocean, similar to the limits imposed by the atmosphere on ground-based telescopes. This 1979 book attempts to connect the known structure of the ocean volume with experimental results in long-range sound transmission. Theories of wave propagation through irregular media, developed for optical and radio wave transmission are found to be inapplicable in many respects due to the complications of ocean structure, particularly the combination of anisotropy and 'sound channel'. The authors extend wave propagation theory to account for the ocean complications and introduces the path-integral approach to the solution of the strong-scattering regime that solves many long-standing problems. The book is written at the post-graduate level, but has been carefully organised to give experimenters a grasp of important results without undue mathematics.
This book was published in 2004. The Interaction of Ocean Waves and Wind describes in detail the two-way interaction between wind and ocean waves and shows how ocean waves affect weather forecasting on timescales of 5 to 90 days. Winds generate ocean waves, but at the same time airflow is modified due to the loss of energy and momentum to the waves; thus, momentum loss from the atmosphere to the ocean depends on the state of the waves. This volume discusses ocean wave evolution according to the energy balance equation. An extensive overview of nonlinear transfer is given, and as a by-product the role of four-wave interactions in the generation of extreme events, such as freak waves, is discussed. Effects on ocean circulation are described. Coupled ocean-wave, atmosphere modelling gives improved weather and wave forecasts. This volume will interest ocean wave modellers, physicists and applied mathematicians, and engineers interested in shipping and coastal protection.
It is only in the past few years that methods of adequate sensitivity have become available for true ultra-trace metal determinations in water. In the case of organics in seawater it has now become possible to resolve the complex mixtures of organics in seawater and achieve the required very low detection limits. Fortunately, the interest in micro-constituents in the seawater both from the environmental and the nutrient balance points of view has coincided with the availability of advanced instrumentation capable of meeting the analytical needs. This complete and up-to-date compilation of the currently employed proven methods for the chemical analysis of seawaters includes 45 tables and 48 figures. The author presents the methods in a logical manner so that the reader can readily learn how to perform them and understand the types of instrumentation available. It helps the practitioner to implement these methods successfully into his laboratory and to apply them quickly and reliably. In addition, the detailed description of each method enables the analyst to set up new analytical methods meeting the needs for the detection of new analytes. The volume covers all aspects of the analysis of seawater using both classical and the most advanced recently introduced physical techniques. It is an invaluable source for the analysts, oceanographers, fisheries experts, politicians and decision maker engaged in seawater environmental protection.
Persistent organic contaminants, which are bioaccumulative and toxic are a concern for the ecosystems and human health and are regulated under international law (global and regional conventions, besides other). If semivolatile, they cycle in different environmental compartments and follow complex transport pathways. The ocean is believed to play a key role in the cycling by accumulating and storing the contaminant and providing a transport medium. But substance fate in the marine environment is not fully understood yet. Here, the global multicompartment chemistry-transport model MPI-MCTM is used to study the fate of organic pollutants in the marine and total environment. For the first time historical emission data are used in spatially-resolved long-term simulations of an insecticide, DDT, and an industrial chemical, perfluorooctanoic acid (PFOA). The model results give new insights into the cycling of these substances as different spatial and process resolutions were tested. E.g. for DDT the model results show saturation and reversal of air-sea exchange, which was not indicated by any other study before.
For the centennial of the birth of "Silent Spring" author Rachel
Carson, a new edition of her groundbreaking paean to the sea
The fragile Antarctic environment consists of a closely linked system of the lithosphere, atmosphere, cryosphere, hydrosphere and biosphere. Changes in this system have influenced global climate, oceanography and sea level for most of Cenozoic time. The geological history of this region therefore provides a special record of important interactions among the various components of the Earth System. Antarctic Marine Geology is the first comprehensive single-authored book to introduce students and researchers to the geological history of the region and the unique processes that occur there. Research literature on the region is widely disseminated, and until now no single reference has existed that provides such a summary. The book is intended as a reference for all scientists working in Antarctica, and will also serve as a textbook for graduate courses in Antarctic marine geology.
Through the writings of the world's leading experts in their fields, this book, first published in 1993, presents the general state of knowledge regarding the effects of climatic change on sea level and their associated impacts. The evidence for past sea level changes and their possible climatic causes on both geological and secular time-scales are reviewed, as are methods for improving observations of sea level changes. These observations examine greenhouse gas concentrations as well as oceanic thermal expansion on Greenland and Antarctic glaciers and ice sheets. Projections of global mean temperature and sea level rise over the next century are made, emphasising the uncertainties involved. A particular area of study is the low-lying coastal regions and the possible effects of severe tropical storms and storm surges. Case studies of the Ganges-Brahmaputra and Mississippi deltas, the Netherlands, Hong Kong and the Norfolk coast of the UK, among others document the regional and local scale where issues relating to sea level, physical environment and socio-economic effects are paramount.
Seabed fluid flow involves the flow of gases and liquids through the seabed. Such fluids have been found to leak through the seabed into the marine environment in seas and oceans around the world - from the coasts to deep ocean trenches. This geological phenomenon has widespread implications for the sub-seabed, seabed, and marine environments. Seabed fluid flow affects seabed morphology, mineralization, and benthic ecology. Natural fluid emissions also have a significant impact on the composition of the oceans and atmosphere; and gas hydrates and hydrothermal minerals are potential future resources. This book describes seabed fluid flow features and processes, and demonstrates their importance to human activities and natural environments. It is targeted at research scientists and professionals with interests in the marine environment. Colour versions of many of the illustrations, and additional material - most notably feature location maps - can be found at www.cambridge.org/9780521819503.
Oceanography calls for a wide variety of mathematical and
statistical techniques, and this accessible treatment provides the
basics every oceanographer needs to know, including Written by an oceanographer and based on his successful course
at the University of Hawaii, the volume is well suited to a
two-semester course at the graduate level. The book reviews the
necessary calculus, clarifies statistical concepts, and includes
end-of-chapter problems that illustrate and expand the various
topics. Tips on using MATLAB(r) software in matrix operations
complement chapters that deal with the formulation of relationships
in terms of matrices.
Understanding wind stress (drag) over the ocean is central to many facets of air-sea interaction, which in turn is vital for models of weather prediction and climate modelling. Wind Stress over the Ocean, first published in 2001, brings together thirty of the world's leading experts in air-sea interaction, under the auspices of the Scientific Committee on Oceanic Research. Wind Stress over the Ocean provides a thorough re-examination of the physical processes that transfer momentum between the atmosphere and the ocean. As well as describing the established fundamentals, the book also explores active areas of research and controversy. The book will form a comprehensive guide and reference for researchers and graduate students in physical oceanography, meteorology, fluid dynamics and coastal engineering.
Without light there would be no life in the sea. Since the seas were the cradle for the evolution of all life forms, the theme of this book is central to our understanding of the interaction between living organisms and their environments. To express the breadth of research in this area, leading experts in topics as diverse as satellite imagery and molecular biology have contributed to this collection of essays on light and life in the sea, first published in 1990. Intended for all with an interest in the marine environment, this book aims to present the reader with a sampler of the exciting research that is underway and to provide an introduction to its broad compass.
Teeming with weird and wonderful life--giant clams and mussels, tubeworms, "eyeless" shrimp, and bacteria that survive on sulfur--deep-sea hot-water springs are found along rifts where sea-floor spreading occurs. The theory of plate tectonics predicted the existence of these hydrothermal vents, but they were discovered only in 1977. Since then the sites have attracted teams of scientists seeking to understand how life can thrive in what would seem to be intolerable or extreme conditions of temperature and fluid chemistry. Some suspect that these vents even hold the key to understanding the very origins of life. Here a leading expert provides the first authoritative and comprehensive account of this research in a book intended for students, professionals, and general readers. Cindy Lee Van Dover, an ecologist, brings nearly two decades of experience and a lively writing style to the text, which is further enhanced by two hundred illustrations, including photographs of vent communities taken in situ. The book begins by explaining what is known about hydrothermal systems in terms of their deep-sea environment and their geological and chemical makeup. The coverage of microbial ecology includes a chapter on symbiosis. Symbiotic relationships are further developed in a section on physiological ecology, which includes discussions of adaptations to sulfide, thermal tolerances, and sensory adaptations. Separate chapters are devoted to trophic relationships and reproductive ecology. A chapter on community dynamics reveals what has been learned about the ways in which vent communities become established and why they persist, while a chapter on evolution and biogeography examines patterns of species diversity and evolutionary relationships within chemosynthetic ecosystems. Cognate communities such as seeps and whale skeletons come under scrutiny for their ability to support microbial and invertebrate communities that are ecologically and evolutionarily related to hydrothermal faunas. The book concludes by exploring the possibility that life originated at hydrothermal vents, a hypothesis that has had tremendous impact on our ideas about the potential for life on other planets or planetary bodies in our solar system.
Climate research over recent decades has shown that the interaction between the ocean and atmosphere drives the global climate system. This engaging and accessible textbook focuses on climate dynamics from the perspective of the upper ocean, and specifically on the interaction between the atmosphere and ocean. It describes the fundamental physics and dynamics governing the behavior of the ocean, and how it interacts with the atmosphere, giving rise to natural climate variability and influencing climate change. Including end-of-chapter questions and turn-key access to online, research-quality data sets, the book allows readers the chance to apply their knowledge and work with real data. Comprehensive information is also provided on the data sets used to produce the numerous illustrations, allowing students to dive deeper into the data themselves. Providing an accessible treatment of physical oceanography, it is perfect for intermediate-advanced students wishing to gain an interdisciplinary introduction to climate science and oceanography.
Observations of ocean circulation have increased as a result of international field programmes and of remote sensing systems on artificial earth satellites. Oceanographers are increasingly turning to inverse methods for combining these observations with numerical models of ocean circulation. Professor Bennett's work explores the potential for inverse theory, emphasizing possibilities rather than expedient or rudimentary applications. In addition to interpolating the data and adding realism to the model solutions, the methods can yield estimates for unobserved flow variables, forcing fields, and model parameters. Inverse formulations can resolve ill-posed modelling problems, lead to design criteria for oceanic observing systems, and enable the testing of models as scientific hypothesis. Exercises of varying difficulty rehearse technical skills and supplement the central theoretical development. Thus this book will be invaluable for environmental scientists and engineers, advanced undergraduates in applied mathematics, and graduate students in physical oceanography.
Coastal basins are defined as estuaries, lagoons, and embayments. This book deals with the science of coastal basins using simple models, many of which are presented in either analytical form or Microsoft Excel or MATLAB. The book introduces simple hydrodynamics and its applications, from the use of simple box and one-dimensional models to flow over coral reefs. The book also emphasizes models as a scientific tool in our understanding of coasts, and introduces the value of the most modern flexible mesh combined wave-current models. Examples from shallow basins around the world illustrate the wonders of the scientific method and the power of simple dynamics. This book is ideal for use as an advanced textbook for graduate students and as an introduction to the topic for researchers, especially those from other fields of science needing a basic understanding of the basic ideas of the dynamics of coastal basins.
This textbook provides an introduction to turbulent motion occurring naturally in the ocean on scales ranging from millimetres to hundreds of kilometres. It describes turbulence in the mixed boundary layers at the sea surface and seabed, turbulent motion in the density-stratified water between, and the energy sources that support and sustain ocean mixing. Little prior knowledge of physical oceanography is assumed. The text is supported by numerous figures, extensive further reading lists, and more than 50 exercises that are graded in difficulty. Detailed solutions to the exercises are available to instructors online at www.cambridge.org/9780521859486. This textbook is intended for undergraduate courses in physical oceanography, and all students interested in multidisciplinary aspects of how the ocean works, from the shoreline to the deep abyssal plains. It also forms a useful lead-in to the author's more advanced graduate textbook, The Turbulent Ocean (Cambridge University Press, 2005).
Written by a group of international experts in their field, this book is a review of Lagrangian observation, analysis and assimilation methods in physical and biological oceanography. This multidisciplinary text presents new results on nonlinear analysis of Lagrangian dynamics, the prediction of particle trajectories, and Lagrangian stochastic models. It includes historical information, up-to-date developments, and speculation on future developments in Lagrangian-based observations, analysis, and modeling of physical and biological systems. Containing contributions from experimentalists, theoreticians, and modellers in the fields of physical oceanography, marine biology, mathematics, and meteorology, this book will be of great interest to researchers and graduate students looking for both practical applications and information on the theory of transport and dispersion in physical systems, biological modelling, and data assimilation.
A vivid portrait of how Naval oversight shaped American oceanography, revealing what difference it makes who pays for science. What difference does it make who pays for science? Some might say none. If scientists seek to discover fundamental truths about the world, and they do so in an objective manner using well-established methods, then how could it matter who's footing the bill? History, however, suggests otherwise. In science, as elsewhere, money is power. Tracing the recent history of oceanography, Naomi Oreskes discloses dramatic changes in American ocean science since the Cold War, uncovering how and why it changed. Much of it has to do with who pays. After World War II, the US military turned to a new, uncharted theater of warfare: the deep sea. The earth sciences-particularly physical oceanography and marine geophysics-became essential to the US Navy, which poured unprecedented money and logistical support into their study. Science on a Mission brings to light how this influx of military funding was both enabling and constricting: it resulted in the creation of important domains of knowledge but also significant, lasting, and consequential domains of ignorance. As Oreskes delves into the role of patronage in the history of science, what emerges is a vivid portrait of how naval oversight transformed what we know about the sea. It is a detailed, sweeping history that illuminates the ways funding shapes the subject, scope, and tenor of scientific work, and it raises profound questions about the purpose and character of American science. What difference does it make who pays? The short answer is: a lot.
Foraminifera and thecamoebians are highly sensitive to environmental stress (natural or anthropogenic). This feature means that they can be used to biologically characterize a variety of freshwater and coastal marine environments. Due to their small size and hard shells, large quantities are also found fossilised in core samples, making them ideal for reconstructing past environmental conditions. This volume covers the specific environmental applications of these organisms and contains an introduction to the subject, detailed descriptions of methods and techniques and case studies. Written for non-specialists, this book will appeal to resource managers and consultants in the public and private sector who routinely work on coastal environmental problems. The book will also serve as a supplementary text for graduate students in many courses on environmental monitoring, ecological baseline studies and environmental science.
Modeling and prediction of oceanographic phenomena and climate is based on the integration of dynamic equations. The Equations of Oceanic Motions derives and systematically classifies the most common dynamic equations used in physical oceanography, from large scale thermohaline circulations to those governing small scale motions and turbulence. After establishing the basic dynamical equations that describe all oceanic motions, M??ller then derives approximate equations, emphasizing the assumptions made and physical processes eliminated. He distinguishes between geometric, thermodynamic and dynamic approximations and between the acoustic, gravity, vortical and temperature-salinity modes of motion. Basic concepts and formulae of equilibrium thermodynamics, vector and tensor calculus, curvilinear coordinate systems, and the kinematics of fluid motion and wave propagation are covered in appendices. Providing the basic theoretical background for graduate students and researchers of physical oceanography and climate science, this book will serve as both a comprehensive text and an essential reference.
Inverse Modeling of the Ocean and Atmosphere is a graduate-level book for students of oceanography and meteorology, and anyone interested in combining computer models and observations of the hydrosphere or solid earth. A step-by-step development of maximally efficient inversion algorithms, using ideal models, is complemented by computer codes and comprehensive details for realistic models. Variational tools and statistical concepts are concisely introduced, and applications to contemporary research models, together with elaborate observing systems, are examined in detail. The book offers a review of the various alternative approaches, and further advanced research topics are discussed. Derived from the author's lecture notes, this book constitutes an ideal course companion for graduate students, as well as being a valuable reference source for researchers and managers in theoretical earth science, civil engineering and applied mathematics.
Life on Earth emerged under anaerobic conditions. Many fundamental b- chemical and metabolic pathways evolved before the atmosphere contained oxygen. Today, anaerobic (anoxic) conditions in marine milieus are generally restricted to sediments and to basins isolated from oxygenated deep-sea cir- lation. Oxygen-de?cientorhypoxicconditionsarede?nedinoperationalterms. In speaking of the degree of O -de?ciency, the term hypoxic is usually de?ned 2 as ranging between 22 and 64?MofO , while suboxic refers to a range below 2 10?M, and anoxic is the complete absence of oxygen. Biologists commonly use the term hypoxia to describe the point at which animals suffocate. But the papers presented in this book deal with the whole range of oxygen-de?cient conditions, and the de?nitions some authors have used here may vary. Enhanced oxygen consumption by decomposition of organic matter and slow downward mixing and diffusion of dissolved oxygen from the surface waters can lead to oxygen de?ciency in the water column in highly productive waters, forming the Oxygen Minimum Zone (OMZ). Bottom waters of coastal upwelling regions are frequently exposed to hypoxic (suboxic) or anaerobic conditions owing to extremely high primary productivity. The development of these conditions represents an acute perturbation to ecological dynamics and ?sheries. Inthepast,anoxicconditionsinthewatercolumnmayhavedeveloped morereadily. Oceanicanoxicevents(OAE)wereepisodesofgloballyenhanced organic carbon burial that signi?cantly affected global climate by reducing atmospheric CO . An excess of nutrient loading leads to eutrophication of 2 coastal areas and enclosed seas, a wide-spread global problem.
This book was first published in 2005. When an oceanic tidal wave that is primarily active on the water surface passes an ocean shelf or a region with a seamount, it is split into a less energetic surface wave and other internal modes with different wavelengths and propagation speeds. This cascading process, from the barotropic tides to the baroclinic components, leads to the transformation of tidal energy into turbulence and heat, an important process for the dynamics of the lower ocean. Baroclinic Tides demonstrates the analytical and numerical methods used to study the generation and evolution of baroclinic tides and, by comparison with experiments and observational data, shows how to distinguish and interpret internal waves. Strongly non-linear solitary internal waves, which are generated by internal tidal waves at the final stage of their evolution, are investigated in detail. This book is intended for researchers and graduate students of physical oceanography, geophysical fluid dynamics and hydroacoustics. |
You may like...
Algebra, Geometry and Software Systems
Michael Joswig, Nobuki Takayama
Hardcover
R2,695
Discovery Miles 26 950
Group Statements: Volume 1…
Z. Koppeschaar, K. Sihiya, …
Paperback
|