![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Organic chemistry > Organometallic chemistry
Organometallic chemistry is an interdisciplinary science which continues to grow at a rapid pace. Although there is continued interest in synthetic and structural studies the last decade has seen a growing interest in the potential of organometallic chemistry to provide answers to problems in catalysis synthetic organic chemistry and also in the development of new materials. This Specialist Periodical Report aims to reflect these current interests reviewing progress in theoretical organometallic chemistry, main group chemistry, the lanthanides and all aspects of transition metal chemistry. Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.
General The making and breaking of carbon-metal bonds is fundamental to all the p- cesses of organometallic chemistry and moreover plays a significant role in - mogeneous as well as heterogeneous catalysis. This rather blunt statement - phasises the extent to which a proper understanding of the structure, energetics and reactivity of C-M bonds is at the core of the discipline. In order to accept it, a proper definition of the terms involved is required. Quite simply we define the metal-carbon bond in its broadest sense to embrace carbon linked to transiti- metals, lanthanides and actinides, and main group metals. We do not dist- guish between formally covalent single or multiple bonding on the one hand and q-bonding on the other. In the studies to be described in the following chapters, the emphasis will be on transition metal complexes and insofar as the fun- mentals come under scrutiny, simple metal alkyls or related species (metal al- nyl, alkynyl, aryl, or allyl) will play an emphatic part. The central role of metal alkyls and their congeners and especially the role of their metal carbon linkage in homogeneous catalysis may be appreciated by considering some key reaction steps leading to their formation or breakdown. There follows a few prominent examples of transition metal mediated stoichiometric or catalytic processes: - In homogeneous hydrogenation of double bonds, the stepwise reaction of an q2-coordinated alkene with dihydrogen gives first an alkyl metal hydride, and then the decoordinated alkane by elimination.
In the last decade there have been numerous advances in the area of rhodium-catalyzed hydroformylation, such as highly selective catalysts of industrial importance, new insights into mechanisms of the reaction, very selective asymmetric catalysts, in situ characterization and application to organic synthesis. The views on hydroformylation which still prevail in the current textbooks have become obsolete in several respects. Therefore, it was felt timely to collect these advances in a book. The book contains a series of chapters discussing several rhodium systems arranged according to ligand type, including asymmetric ligands, a chapter on applications in organic chemistry, a chapter on modern processes and separations, and a chapter on catalyst preparation and laboratory techniques. This book concentrates on highlights, rather than a concise review mentioning all articles in just one line. The book aims at an audience of advanced students, experts in the field, and scientists from related fields. The didactic approach also makes it useful as a guide for an advanced course.
This book presents critical reviews of the present position and future trends in modern chemical research concerned with chemical structure and bonding. It contains short and concise reports, each written by the world's renowned experts. Still valid and useful after 5 or 10 years, more information as well as the electronic version of the whole content available at springerlink.com.
Masakatsu Shibasaki, Motomu Kanai, Shigeki Matsunaga, and Naoya Kumagai: Multimetallic Multifunctional Catalysts for Asymmetric Reactions.- Takao Ikariya: Bifunctional transition metal-based molecular catalysts for asymmetric syntheses.- Chidambaram Gunanathan and David Milstein: Bond Activation by Metal-Ligand Cooperation: Design of Green Catalytic Reactions Based on Aromatization-Dearomatization of Pincer Complexes.- Madeleine C. Warner, Charles P. Casey, and Jan-E. Backvall: Shvo s Catalyst in Hydrogen Transfer Reactions.- Noritaka Mizuno, Keigo Kamata, and Kazuya Yamaguchi: Liquid-Phase Selective Oxidation by Multimetallic Active Sites of Polyoxometalate-Based Molecular Catalysts.- Pingfan Li and Hisashi Yamamoto: Bifunctional Acid Catalysts for Organic Synthesis.- Jun-ichi Ito, Hisao Nishiyama: Bifunctional Phebox Complexes for Asymmetric Catalysis."
The present book is based on the work of M.N.Bochkarev, G.S.Kalinina, L.N. zakharov and S.Ya.Khorshev. The Russian edition of that book appeared under the same title in 1989 and covered literature data up to the middle of 1986. Since that time the number of publications on this subject increased significantly. In this volume we include all the data published up to the end of 1990, as well as some of the most important relevant articles of 1991. Therefore, this book should be considered as a new book, devoted to the same problems, rather than as just a translation of the mentioned issue. This book deals with compounds of scandium, yttrium, lanthanum and lanthanoids containing direct metal-carbon bond, Le. with the real organometallic complexes of these metals. Besides, the volume includes the rare earth complexes, in which organic ligand is bonded to the metal atom via the atom of another element of the Periodic Table. In other words, the book includes all classes of rare earth organoderivatives. Carboxilates, fl-diketonates and related chelates are the exceptions, because their properties are closer to inorganic compounds and they were fully described elsewhere. It should be noted, that "rare earth elements," "rare earth metals," "lanthanoids" and related terms are used in this book for indicating scandium, yttrium, lanthanum and the following 14 elements of the Periodic Table.
In previous volumes in this series, "Advances in Metal and
Semiconductor Clusters," the focus has been on atomic clusters of
metals, semiconductors and carbon. Fundamental gas phase studies
have been surveyed, and most recently scientists have explored new
materials which can be produced from clusters or cluster
precursors. In this latest volume, the focus shifts to clusters
composed primarily of non-metal molecules or atoms which have one
or more metal atoms seeded into the cluster as an impurity. These
clusters provide model systems for metal ion solvation processes
and metal-ligand interactions.
An outstanding international scientific event in the field of metathesis chemistry, the NATO ASI "Green Metathesis Chemistry: Great Challenges in Synthesis, Catalysis and Nanotechnology" has been recently organized in Bucharest, Romania (July 21- August 2, 2008). Numerous renowned scientists, young researchers and students, convened for two weeks to present and debate on the newest trends in alkene metathesis and identify future perspectives in this fascinating area of organic, organometallic, catalysis and polymer chemistry with foreseen important applications in materials science and technology. Following the fruitful practice of NATO Advanced Study Institutes, selected contributions covering plenary lectures, short communications and posters have been compiled in this special volume dedicated to this successful convention on green metathesis chemistry. General interest was primarily focused on relevant "green chemistry" features related to all types of metathesis reactions (RCM, CM, enyne metathesis, ADMET and ROMP). Diverse opportunities for green and sustainable technologies and industrial procedures based on metahesis have been identified. Largely exemplified was the utility of this broadly applicable strategy in organic synthesis, for accessing natural products and pharmaceuticals, and also its ability to fit in the manufacture of smart and nanostructured materials, self-assemblies with nanoscale morphologies, macromolecular engineering.
The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students.
Kyle A. Grice, Margaret L. Scheuermann and Karen I. Goldberg: Five-Coordinate Platinum(IV) Complexes.- Jay A. Labinger and John E. Bercaw: The Role of Higher Oxidation State Species in Platinum-Mediated C-H Bond Activation and Functionalization.- Joy M. Racowski and Melanie S. Sanford: Carbon-Heteroatom Bond-Forming Reductive Elimination from Palladium(IV) Complexes.- Helena C. Malinakova: Palladium(IV) Complexes as Intermediates in Catalytic and Stoichiometric Cascade Sequences Providing Complex Carbocycles and Heterocycles.- Allan J. Canty and Manab Sharma: h1-Alkynyl Chemistry for the Higher Oxidation States of Palladium and Platinum.- David C. Powers and Tobias Ritter: Palladium(III) in Synthesis and Catalysis.- Marc-Etienne Moret: Organometallic Platinum(II) and Palladium(II) Complexes as Donor Ligands for Lewis-Acidic d10 and s2 Centers.
In this thesis, the author introduces two strategies used to construct various types of N-heterocycles, based on the chemistry of zirconacycles and 2,6-diazasemibullvalenes. In the first part, the author presents the development of multi-component cyclization of a zirconacyclobutene-silacyclobutene fused compound, nitriles and unsaturated compounds. These reactions provide synthetically useful methodology for various N-heterocycles such as 3-acyl pyrrole, pyrrolo[3,2-d]pyridazine and dihydropyrroloazepine, which are all difficult to synthesize by other means. The isolation and characterization of the key three-fused-ring Zr/Si-containing intermediates are also described in detail. These results show that the zirconacyclobutene-silacyclobutene fused compound behaves as a "chemical transformer" upon treatment with various substrates via the "coordination-induced skeleton rearrangement" mechanism. In the second part, the author demonstrates the synthesis and isolation of a series of 2,6-diazasemibullvalenes (NSBVs) from the reaction of 1,4-dilithio-1,3-dienes and nitriles, highlighting the significant progress made for the first time in this work: (1) determination of X-ray crystal structure of a substituted 2,6-diazasemibullvalene; (2) measurement of the activation barrier of its rapid intramolecular aza-Cope rearrangement in solution; (3) exploration of several reaction types of NSBV with diverse ring-expansion products and "bowl-shape" or "cage-shape" N-containing polycyclic skeletons; (4) demonstration of the localized structure as the predominant form and the homoaromatic delocalized structure as a minor component in the equilibrium using theoretical analysis. Based on well-founded results, this work sheds new light on this controversial topic.
Stability constants are fundamental to understanding the behavior of metal ions in aqueous solution. Such understanding is important in a wide variety of areas, such as metal ions in biology, biomedical applications, metal ions in the environment, extraction metallurgy, food chemistry, and metal ions in many industrial processes. In spite of this importance, it appears that many inorganic chemists have lost an appreciation for the importance of stability constants, and the thermodynamic aspects of complex formation, with attention focused over the last thirty years on newer areas, such as organometallic chemistry. This book is an attempt to show the richness of chemistry that can be revealed by stability constants, when measured as part of an overall strategy aimed at understanding the complexing properties of a particular ligand or metal ion. Thus, for example, there are numerous crystal structures of the Li+ ion with crown ethers. What do these indicate to us about the chemistry of Li+ with crown ethers? In fact, most of these crystal structures are in a sense misleading, in that the Li+ ion forms no complexes, or at best very weak complexes, with familiar crown ethers such as l2-crown-4, in any known solvent. Thus, without the stability constants, our understanding of the chemistry of a metal ion with any particular ligand must be regarded as incomplete. In this book we attempt to show how stability constants can reveal factors in ligand design which could not readily be deduced from any other physical technique.
There are only few topics in organometallic chemistry, which have stimulated research activities in as many areas, as transition-metal carbene (alkylidene) complexes. About 25 years after the first planned synthesis of a carbene complex in E.O. Fischer's laboratory in Munich the NATO Advanced Research Workshop on Transition-Metal Carbene Complexes was the first meeting which, brought together scientists from different disciplines to discuss inorganic, organic, theoretical structural catalysis-related aspects of metal carbene chemistry. The 70th birthday of Professor E.O. Fischer was a good occasion for this enterprise. The organizers of the meeting (K.D. Dotz, Marburg; F.R. KreiBl, Munchen; U. Schubert, Wurzburg) were encouraged by the fact that most of the leading scientists in this area were able to participate in the workshop. The very high standard of the contributions is reflected in this book, which contains papers from the majority of the participants. The Proceedings show the state of the art in metal carbene chemistry and will hopefully be a landmark in the development of this area of chemistry. Generous financial support for the workshop and for the preparation of this book was provided by the Scientific Affairs Division of NATO and some companies. The organizers also acknowledge the efforts of the staff of the Bildungs zentrum der Hans-Seidel-Stiftung in Wild bad Kreuth for creating a pleasant and stimulating atmosphere during the conference."
Reactions of Pyridines, Benzopyridines and Azapyridines with Organomagnesiums and Organolithiums, by Manfred Schlosser Lithiations and Magnesiations on Quinoline and Isoquinoline, by Floris Chevallier, Florence Mongin Metalation Reactions of Pyridines, Quinolines, and Isoquinolines with Ate Bases and Their Alkali Metal Salt-Modified Congeners, by Costa Metallinos, Kathryn Stromski Lithiations and Grignard Reactions on Pyrimidine and Quinazoline, by Andrej Kolarovic Other Stoichiometric Metalation Reactions on Pyrimidine and Quinazoline, by Philippe C. Gros Metalation of Pyrazine and Quinoxaline, by Nelly Ple1, Corinne Fruit Metalation of Pyridazine, Cinnoline, and Phtalazine, by Ernst Horkel "
Metal carbene complexes have made their way from organometallic curiosities to valuable reagents and catalysts. They offer novel synthetic opportunities in carbon carbon bond formation based on either carbene-centered reactions or on metal-templated processes which makes them indispensable in modern synthetic methodology. The most prominent metal carbenes are now either commercially available or easy to synthesize and handle by modern laboratory techniques. This volume organized in eight chapters written by the leading scientists in the field illustrates the theoretical background, non-classical nucleophilic and cycloaddition patterns, chromium-templated benzannulation and photo-induced reactions, rhodium-catalyzed carbene transfer as well as the principles and applications of olefin metathesis which coined the progress in synthetic methodology over the past decade. Designed for researchers in academia and industry as well as graduate students it presents the state-of-the-art potential of carbene complexes in modern organic synthesis.
The past decade has seen a dramatic acceleration of activity and interest in phenomena surrounding lanthanide and actinide organo metallic compounds. Around the world, active research in organo-f element synthesis, chemistry, catalysis, crystallography, and quantum chemistry is in progress. This activity has spanned a remarkably wide range of disciplines, from synthetic/mechanistic inorganic and organic chemistry to radiochemistry, catalytic chemistry, spectroscopy (vibra tional, optical, magnetic resonance, photoelectron, Mossbauer), X-ray and neutron diffraction structural analysis, as well as to crystal field and molecular orbital theoretical studies at the interface of chemistry and physics. These investigations have been motivated both by fundamental and applied goals. The evidence that f-element organo metallic compounds have unique chemical and physical properties which cannot be duplicated by organometallic compounds of d-block elements has suggested many new areas of endeavor and application. For these reasons, a great many scientists felt the need for some international forum devoted exclusively to the subject of lanthanide and actinide organometallic compounds. In September of 1978, a NATO Advanced Study Institute entitled, "Organometallics of the f-Elements," was held at the SOGESTA Conference Center near Urbino, Italy. It was the universal feeling of the partic ipants that this first meeting was a great success and that vital international communication and collaboration had been stimulated. The principal lectures at this Institute were published by Reidel in 1979 as part of the NATO ASI Monograph Series ("Organometallics of the f-Elements," T. J. Marks and R. D. Fischer, editors)."
In this book leading experts have surveyed major areas of application of NHC metal complexes in catalysis. The authors have placed a special focus on nickel- and palladium-catalyzed reactions, on applications in metathesis reactions, on oxidation reactions and on the use of chiral NHC-based catalysts. This compilation is rounded out by an introductory chapter and a chapter dealing with synthetic routes to NHC metal complexes.
This volume covers both basic and advanced aspects of organometallic chemistry of all metals and catalysis. In order to present a comprehensive view of the subject, it provides broad coverage of organometallic chemistry itself. The catalysis section includes the challenging activation and fictionalization of the main classes of hydrocarbons and the industrially crucial heterogeneous catalysis. Summaries and exercises are provides at the end of each chapter, and the answers to these exercises can be found at the back of the book. Beginners in inorganic, organic and organometallic chemistry, as well as advanced scholars and chemists from academia and industry will find much value in this title.
Magnetic nanocatalysts are garnering attention for development of greener catalytic processes due to their ease of recovery from a reaction medium. This book delves into a variety of magnetic nanocatalysts, their use in the industrial context, and recyclability. Topics covered include wastewater treatment, drug delivery, and industrial catalysis; another available volume focuses on the use of magnetic nanocatalysts in synthetic appliances and transformations.
The analogy between the chemistry of molecular transition metal clusters and the processes of chemisorption and catalysis at metal surfaces (the Cluster Surface analogy) has for a number of years provided an interplay between experimental and theoretical inorganic and physical chemists. This collaborative approach has borne fruit in the use of well-defined modes of metal-ligand bonding in discrete molecular clusters, models for metal-ligand binding on surfaces. Some of the key topics discussed in this book are: mechanisms of the fluxional behaviour in clusters in the liquid phase and the connections with diffusion processes on extended surfaces, and the role of metal-metal bond breaking in diffusion; analogies in the structure of chemisorbed species and related ligands on metallic clusters; analogies between benzene surface chemistry on extended metal surfaces and on metal surfaces in molecular cluster compounds with particular reference to structural distortions; and the role of mobile precursors for dissociation of chemisorption on extended metals and on clusters.
Contents: Yves Canac and Remi Chauvin: Neutral eta1-carbon ligands: beyond carbon monoxide; Esteban P. Urriolabeitia: Ylide Ligands; Wolfgang Petz and Gernot Frenking: Carbodiphosphoranes and related ligands; Mareike C. Jahnke and F. Ekkehardt Hahn: Chemistry of N-Heterocyclic Carbene Ligands; Tsuyoshi Kato, Eddy Maerten, Antoine Baceiredo: Non-NHCs stable singlet carbene ligands; Victorio Cadierno, Sergio E. Garc a-Garrido: All-Carbon-Substituted Allenylidene and Related Cumulenylidene Ligands; Victorio Cadierno, Sergio E. Garc a-Garrido: Heteroatom-Conjugated Allenylidene and Related Cumulenylidene Ligands.
The series Topics in Organometallic Chemistry presents critical overviews of research results in organometallic chemistry. As our understanding of organometallic structure, properties and mechanisms increases, new ways are opened for the design of organometallic compounds and reactions tailored to the needs of such diverse areas as organic synthesis, medical research, biology and materials science. Thus the scope of coverage includes a broad range of topics of pure and applied organometallic chemistry, where new breakthroughs are being achieved that are of significance to a larger scientific audience. The individual volumes of Topics in Organometallic Chemistry are thematic. Review articles are generally invited by the volume editors. All chapters from Topics in Organometallic Chemistry are published OnlineFirst with an individual DOI. In references, Topics in Organometallic Chemistry is abbreviated as Top Organomet Chem and cited as a journal.
This is the first book to comprehensively address the recent developments in both the experimental and theoretical aspects of quasi-one-dimensional halogen-bridged mono- (MX) and binuclear metal (MMX) chain complexes of Pt, Pd and Ni. These complexes have one-dimensional electronic structures, which cause the various physical properties as well as electronic structures. In most MX-chain complexes, the Pt and Pd units are in M(II)-M(IV) mixed valence or charge density wave (CDW) states due to electron-phonon interactions, and Ni compounds are in Ni(III) averaged valence or Mott-Hubbard states due to the on-site Coulomb repulsion. More recently, Pd(III) Mott-Hubbard (MH) states have been realized in the ground state by using the chemical pressure. Pt and Pd chain complexes undergo photo-induced phase transitions from CDW to MH or metal states, and Ni chain complexes undergo photo-induced phase transitions from MH to metal states. Ni chain complexes with strong electron correlations show tremendous third-order optical nonlinearity and nonlinear electrical conductivities. They can be explained theoretically by using the extended Peierls-Hubbard model. For MMX-chain complexes, averaged valence, CDW, charge polarization, and alternating charge polarization states have been realized by using chemical modification and external stimuli, such as temperature, photo-irradiation, pressure, and water vapor. All of the electronic structures and phase transitions can be explained theoretically.
This text provides an invaluable introduction for all undergraduate students of chemistry and a useful reference of more advanced students. The main group elements (including silicon and phosphorus, but not Group VI) and the transition elements are discussed. Emphasis is laid on structure, bonding, preparation and general reactions, with many specific examples of the uses of organometallics in organic synthesis interspersed throughout the text.
While the lanthanides (strictly defined as the 14 elements following lanthanum in the periodic table, but as normally used also include lanthanum itself) have several unique characteristics compared to other elements, their appearance in the history of the development of organometallic chemistry is rather recent. Since the f orbitals are filled gradually from lanthanum ( Xe]4f ) to lutetium ( Xe]4fl4), they are regarded as the f-block elements, which are discriminated from the d-block transition elements. This book was edited as the second volume of "Topics in Organometallic Chemistry," aiming at an overview of recent advances of chemistry and organic synthesis of lanthanides. Since scandium (Sc) and yttrium (Y) (which lie above the lanthanides and have similar characteristics) are also included, this book covers rare earth chemistry. Recently, especially in this decade, the chemistry and organic synthesis of lanthanides have developed rapidly as one of the most exciting areas. An international team of authors has been brought together in order to provide a timely and concise review of current research efforts such as lanthanide catalysis in small molecule organic synthesis especially focused on carbon-carbon bond-forming reactions, chemistry and organic synthesis using low-valent lanthanides such as diiodosamarium, asymmetric catalysis, lant- nide-catalyzed polymer synthesis, and polymer-supported lanthanide catalysts used in organic synthesis. Principles of organolanthanide chemistry are sum- rized in the first chapter. I am sincerely grateful to Drs. R. Anwander, E. C. D- dy, H. Gr6ger, Z. Hou, H. Kagan, G. Molander, J. L. Namy, M. Shibasaki, Y. |
![]() ![]() You may like...
Recent Advances in Organometallic…
Azaj Ansari, Vinod Kumar
Hardcover
Advances in Organometallic Chemistry…
Robert West, Anthony F. Hill
Hardcover
R4,679
Discovery Miles 46 790
Insights into the Chemistry of Organic…
Luis Gomez-Hortiguela
Hardcover
R7,237
Discovery Miles 72 370
BODIPY Dyes - A Privilege Molecular…
Jorge Banuelos-Prieto, Rebeca Sola Llano
Hardcover
R2,820
Discovery Miles 28 200
Advances in Organometallic Chemistry…
Anthony F. Hill, Mark J. Fink
Hardcover
R6,264
Discovery Miles 62 640
|