![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Organic chemistry > Organometallic chemistry
This book presents critical reviews of the present position and future trends in modern chemical research. It provides short and concise reports on chemistry, each written by the world renowned experts. The information remains valid and useful after 5 or 10 years. More information, as well as the electronic version of the whole content, is available at: springerlink.com.
Transition metal catalysis belongs to the most important chemical research areas because a ubiquitous number of chemical reactions are catalyzed by transition metal compounds. Many efforts are being made by industry and academia to find new and more efficient catalysts for chemical processes. Transition metals play a prominent role in catalytic research because they have been proven to show an enormous diversity in lowering the activation barrier for chemical reactions. For many years, the search for new catalysts was carried out by trial and error, which was costly and time consuming. The understanding of the mechanism of the catalytic process is often not very advanced because it is difficult to study the elementary steps of the catalysis with experimental techniques. The development of modern quantum chemical methods for calculating possible intermediates and transition states was a breakthrough in gaining an understanding of the reaction pathways of transition metal catalyzed reactions. This volume, organized into eight chapters written by leading scientists in the field, illustrates the progress made during the last decade. The reader will obtain a deep insight into the present state of quantum chemical research in transition metal catalysis.
About eight years ago, the catalytic carbonylation of organic nitro compounds was a research field developed enough to justify a rather long review on this subject. Now, we feel that the scientific results and new achievements in this field, very important even from an industrial point of view, require a book in order to be adequately presented. The competition between the catalytic carbonylation of organic nitro compounds and other chemical routes for the synthesis of a variety of organic compounds has not yet come to an end, but many progresses have been done in the former field. We also like to emphasize that this type of research does not only involve relevant industrial problems to be solved, but it opens a research field where the academic interests (mechanism of the reactions, isolation of the intermediates in the catalytic cycles, synthesis of model compounds and so on) can find a lot of opportunities.
Computational Modelling of Homogeneous Catalysis is an extensive collection of recent results on a wide array of catalytic processes. The chapters are, in most cases, authored by the researchers who have performed the calculations. The book illustrates the importance of computational modelling in homogeneous catalysis by providing up-to-date reviews of its application to a variety of reactions of industrial interest, including: -olefin polymerization; This book facilitates understanding by experimental chemists in the field on what has already been accomplished and what can be expected from calculations in the near future. In addition, the book provides computational chemists with a first-hand knowledge on the state of the art in this exciting field.
Amplification of Chirality presents critical reviews of the present position and future trends in modern chemical research. The book contains short and concise reports on chemistry. Each is written by the world renowned experts. Still valid and useful after 5 or 10 years, more information as well as the electronic version of the whole content available at: springerlink.com.
Polyolefin is a major industry that is important for our economy and impacts every aspect of our lives. The discovery of new transition metal-based catalysts is one of the driving forces for the further advancement of this field. Whereas the classical heterogeneous Ziegler-Natta catalysts and homogeneous early transition metal metallocene catalysts remain the workhorses of the polyolefin industry, in roughly the last decade, tremendous progress has been made in developing non-metallocene-based olefin polymerization catalysts. Particularly, the discovery of late transition metal-based olefin polymerization catalysts heralds a new era for this field. These late transition metal complexes not only exhibit high activities rivaling their early metal counterparts, but more importantly they offer unique properties for polymer architectural control and copolymerization with polar olefins. In this book, the most recent major breakthroughs in the development of new olefin polymerization catalysts, including early metal metallocene and non-metallocene complexes and late transition metal complexes, are discussed by leading experts. The authors highlight the most important discoveries in catalysts and their applications in designing new polyolefin-based functional materials.
The design of efficient syntheses of medicinal agents is one of the prime goals of the process chemist in the pharmaceutical industry. The expanding list of metal-mediated reactions has had a major impact on this endeavor over the last two decades. This volume will highlight some of the areas of organometallic chemistry that have played a particularly important role in development. The chapters are written by chemists who work in the process groups of major pharmaceutical companies and fine chemical manufacturers. Having demonstrated the power of organometallics in their processes the authors herein expand upon their experiences with examples from the literature as reported by process groups within the industry. The chapters are organized either by the application of a particular metal or reaction class. Removal of the residual metal(s) from the isolated active pharmaceutical ingredient (API) is key to the release of the material for human consumption, and hence, is reviewed here as well. This volume of Topics in Organometallic Chemistry is presented to offer a representative cross section of organometallic applications in the pharmaceutical industry as well as to give an appreciation for the creativity possible in process chemistry.
A wide range of ?elds within supramolecular chemistry are of current and great interest ranging from nanosciences, medicinal sciences, biosciences, and even organic sciences and this is a mature and extremely active area of research. In 1978, Lehn de?ned this chemistry as the "chemistry of molecular assemblies and of the intermolecular bond." In other words, supramolecular chemistry is noncovalent chemistry based upon covalent chemistry. On the other hand, it is well known that replacing the carbon atom of cyclic compounds can lead to dramatic changes in chemical and physical properties and the principles of homocyclic chemistry are often of limited value and may even lead to incorrect results. This is often indeed the case in supramolecular chemistry. The modern explosion of nonochemistry is highly based upon the fundamental recognition of intermolecular interactions engendered by supramolecular scientists. In this volume entitled Heterocyclic Supramolecules I, a part of the series Topics in Heterocyclic Chemistry, some selected topics in noncovalent ch- istry from the last decade are highlighted, with attention particularly focused on heterocyclic supramolecules as well as heterocycle-based nanosciences. The ?rst chapter, "Molecular Recognition with designed Heterocycles and their Lanthanide Complexes" by S. Mameri, S. Shinoda, and H. Tsukube - scribes various synthetic receptors for speci?c binding of cationic anionic guests mainly in the solution states. Furthermore, special attention is directed at the heterocycle-lanthanide complexes that worked as luminescent sensory devices of biologically important anions. Thus, "rare" earth metals are making the change into "hopeful" earth metals.
Our knowledge of the chemistry of selenium and tellurium has seen significant progress in the last few decades. This monograph comprises contributions from leading scientists on the latest research into the synthesis, structure and bonding of novel selenium and tellurium compounds. It provides insight into mechanistic studies of these compounds and describes coordination chemistry involving selenium and tellurium containing ligands. Contributions also describe the theoretical and spectroscopic studies of selenium and tellurium compounds. Additionally, this monograph outlines the applications of selenium and tellurium in biological systems, materials science and as reagents in organic synthesis and shows how these applications have been a fundamental driving force behind the research into the inorganic and organic chemistry these fascinating elements.
Qi-Lin Zhou and Jian-Hua Xie: Chiral Spiro Catalysts.- Fuk Loi Lam, Fuk Yee Kwong and Albert S. C. Chan: Chiral Phosphorus Ligands with Interesting Properties and Practical Applications.- Jiang Pan, Hui-Lei Yu, Jian-He Xu, Guo-Qiang Lin: Advances in Biocatalysis: Enzymatic Reactions and Their Applications.- Mei-Xiang Wang: Enantioselective Biotransformations of Nitriles.- Man Kin Wong, Yiu Chung Yip and Dan Yang: Asymmetric Epoxidation Catalyzed by Chiral Ketones.- W. J. Liu, N. Li and L. Z. Gong: Asymmetric Organocatalysis.- Qing-Hua Fan and Kuiling Ding: Enantioselective Catalysis with Structurally Tunable Immobilized Catalysts.- Chang-Hua Ding, Xue-Long Hou: Transition Metal-Catalyzed Asymmetric Allylation.- Jian Zhou and Yong Tang: Enantioselective Reactions with Trisoxazolines.- Xiang-Ping Hu, Duo-Sheng Wang, Chang-Bin Yu, Yong-Gui Zhou, and Zhuo Zheng: Adventure in Asymmetric Hydrogenation: Synthesis of Chiral Phosphorus Ligands and Asymmetric Hydrogenation of Heteroaromtics.
Masakatsu Shibasaki, Motomu Kanai, Shigeki Matsunaga, and Naoya Kumagai: Multimetallic Multifunctional Catalysts for Asymmetric Reactions.- Takao Ikariya: Bifunctional transition metal-based molecular catalysts for asymmetric syntheses.- Chidambaram Gunanathan and David Milstein: Bond Activation by Metal-Ligand Cooperation: Design of Green Catalytic Reactions Based on Aromatization-Dearomatization of Pincer Complexes.- Madeleine C. Warner, Charles P. Casey, and Jan-E. Backvall: Shvo s Catalyst in Hydrogen Transfer Reactions.- Noritaka Mizuno, Keigo Kamata, and Kazuya Yamaguchi: Liquid-Phase Selective Oxidation by Multimetallic Active Sites of Polyoxometalate-Based Molecular Catalysts.- Pingfan Li and Hisashi Yamamoto: Bifunctional Acid Catalysts for Organic Synthesis.- Jun-ichi Ito, Hisao Nishiyama: Bifunctional Phebox Complexes for Asymmetric Catalysis."
Structure, Bonding, and Reactivity of Reactant Complexes and Key Intermediates, by Elena Soriano and Jose Marco-Contelles.- Cycloisomerization of 1, "n"-Enynes Via Carbophilic Activation, by Patrick Yves Toullec and Veronique Michelet.-
"
Aldol Reactions provides a comprehensive up-to-date overview of aldol reactions including application of different metal enolates; catalytic aldol additions catalyzed by different Lewis acids and Lewis bases; enantioselective direct aldol additions; antibodies and enzyme catalyzed aldol additions and the recent aggressive development of organocatalyzed aldol additions. The power of each method is demonstrated by several applications in total synthesis of natural products. The pros and cons of these methodologies with regard to stereoselectivity, regioselectivity and application in total synthesis of natural products are discussed. Great importance is set to the diverse possibilities of the manual of aldol reaction to install required configurations in complicated natural product synthesis.
Kyle A. Grice, Margaret L. Scheuermann and Karen I. Goldberg: Five-Coordinate Platinum(IV) Complexes.- Jay A. Labinger and John E. Bercaw: The Role of Higher Oxidation State Species in Platinum-Mediated C-H Bond Activation and Functionalization.- Joy M. Racowski and Melanie S. Sanford: Carbon-Heteroatom Bond-Forming Reductive Elimination from Palladium(IV) Complexes.- Helena C. Malinakova: Palladium(IV) Complexes as Intermediates in Catalytic and Stoichiometric Cascade Sequences Providing Complex Carbocycles and Heterocycles.- Allan J. Canty and Manab Sharma: h1-Alkynyl Chemistry for the Higher Oxidation States of Palladium and Platinum.- David C. Powers and Tobias Ritter: Palladium(III) in Synthesis and Catalysis.- Marc-Etienne Moret: Organometallic Platinum(II) and Palladium(II) Complexes as Donor Ligands for Lewis-Acidic d10 and s2 Centers.
Juan I. Padron and Victor S. Martin: Catalysis by means of Fe-based Lewis acids; Hiroshi Nakazawa*, Masumi Itazaki: Fe-H Complexes in Catalysis; Kristin Schroder, Kathrin Junge, Bianca Bitterlich, and Matthias Beller: Fe-catalyzed Oxidation Reactions of Olefins, Alkanes and Alcohols: Involvement of Oxo- and Peroxo Complexes; Chi-Ming Che, Cong-Ying Zhou, Ella Lai-Ming Wong: Catalysis by Fe=X Complexes (X=NR, CR2); Rene Peters, Daniel F. Fischer and Sascha Jautze: Ferrocene and Half Sandwich Complexes as Catalysts with Iron Participation; Markus Jegelka, Bernd Plietker: Catalysis by Means of Complex Ferrates."
3.1.1 ?-Conjugated Materials ?-conjugated polymers (CPs) and oligomers are materials with an extended ?-system along the backbone. The materials possess many remarkable prop- ties, including high charge carrier mobilities, electrical conductivities (doped), electrochromism, and electroluminescence [1]. These properties have been taken advantage of in exploration of potential applications including in ch- ical sensors, light-emitting devices, and ?eld-effect transistors. Many efforts have been devoted to synthesizing new conjugated polymers and oligomers in an effort to increase their processibility, optimize the desirable properties, and explore new properties. In Fig. 3.1 are shown examples of some of the CPs that have been prepared and studied. Coupling ?-conjugated materials to metal complexes gives hybrid mate- als in which the properties of the metal complex may be coupled to those of the conjugated backbone [2]. For example, these materials could be used in energy-harvesting devices such as solar cells or polymer-based light-emitting devices,wherehighchargecarrier mobilities of theconjugatedmaterialmay be combined with either the light-absorbing or emitting metal groups, giving improved device performance [3, 4]. In addition to an electronic role, metal complexes may also be used to geometrically orient ?-conjugated materials in speci?c three-dimensional arrangments in the solid state. Careful conside- tion of theelectronicinteractionsand excitedstatesisnecessary for thedesign of functional materials of this type.
Heterogeneous catalysis has been essential to the development of efficient chemical processes for more than a century, and this field has been traditionally part of the solid state chemistry and surface science communities. The design of better catalysts has raised the following questions: "what is the structure of the active sites?" and "how to control their nature?" The necessary need to develop more sustainable chemical processes and the success of homogeneous catalysis relying on molecular organometallic chemistry has led the community of molecular chemists to investigate the preparation of single-site heterogeneous catalysts. The authors discuss the molecular design, the preparation, the characterisation and the catalytic applications of well-defined oxides and metal particles. The readers will acquire a molecular understanding of heterogeneous catalysis, which will help them develop a critical view and which will attract them to study this fascinating field.
The use of phosphine derivatives has historically induced the tremendous development of catalysis (both non-asymmetric and asymmetric). Although the chemistry of amines is more documented, the use of nitrogen-containing ligands only appeared recently. Nevertheless, during the last ten years, the results describing chiral diamine preparations and their uses in asymmetric catalysis and synthesis are increasing faster than their phosphorus counterparts. The reader will find in this volume the most recent methods for the synthesis of chiral diamines as well as their applications in asymmetric catalysis of CC bond formation. Particular attention will be given to spartein and derivatives of such diamines. Recently, the particular properties and the chemistry of amines allowed to obtain catalysts easy to separate and recycle and new types of ligands such as diaminocarbenes, ureas and thioureas. Finally, the complexing properties of some diamines allowed the formation of complexes with chirality "at the metal " which is of major theoretical interest and presents numerous potential applications.
Directed metalation is recognized as one of the most useful methodologies for the regio- and stereoselective generation of organometallic species, the generation of which necessarily leads to the selective formation of organic products. Cyclometalation using Li, Mn, and Pd, and directed hydrometalation and carbometalation using Al and Zn, have been utilized for regio- and/or stereoselective synthesis for decades. Recently, a new chelation-assisted methodology has been developed not only for controlling regio- and stereoselectivity of reactions, but also for accelerating reactions. In particular, chelation-methodology has been utilized as a new activation method, in which a carbon-metal bond is generated directly from a C-H bond; a reaction rarely achieved using conventional methods. A wide variety of catalytic functionalization reactions of C-H bonds by the utilization of a chelation, have been developed recently and are comprehensively discussed in this book by leading experts. In addition, new approaches to directed hydrometalation and directed carbometalation as a key step are also discussed. A unique stereo- and regioselective hydroformylation has been developed through the utilization of directed hydrometalation. The regioselective Mizoroki-Heck reaction is another example in which directed carbometalation can be used to achieve a high regioselectivity. These examples emphasize how these innovative methodologies are contributing to different fields of chemistry.
Over the past few decades, mankind has observed an unprecedented and remarkable growth in industry, resulting in a more prosperous lifestyle for peoples of many countries. In developing countries, however, explosive industrial growth is just now beginning to raise the living standards of the people. Most industries, especially in these developing countries, are still powered by the burning of fossil fuels; con- quently, a lack of clean energy resources has caused environmental pollution on an unprecedented large and global scale. Toxic wastes have been relentlessly released into the air and water leading to serious and devastating environmental and health problems while endangering the planet and life itself with the effects of global warming. To address these urgent environmental issues, new catalytic and photocatalytic processes as well as open-atmospheric systems are presently being developed that can operate at room temperature while being totally clean and ef?cient and thus environmentally harmonious. Essential to technologies harnessing the abundant solar energy that reaches the earth are the highly functional photocatalytic proce- es that can utilize not only UV light, but also visible light.
For fifty years, Hydrosilylation has been one of the most fundamental and elegant methods for the laboratory and industrial synthesis of organosilicon and silicon related compounds. Despite the intensive research and continued interest generated by organosilicon compounds, no comprehensive book incorporating its various aspects has been published this century. The aim of this book is to comprehensively review the advances of hydrosilylation processes since 1990. The survey of the literature published over the last two decades enables the authors to discuss the most recent aspects of hydrosilylation advances (catalytic and synthetic) and to elucidate the reaction mechanism for the given catalyst used and the reaction utilization. New catalytic pathways under optimum conditions necessary for efficient synthesis of organosilicon compounds are presented. This monograph shows the extensive development in the application of hydrosilylation in organic and asymmetric syntheses and in polymer and material science.
Contents: Gerard Jaouen, Nils Metzler-Nolte : Introduction ; Stephane GIBAUD and Gerard JAOUEN: Arsenic - based drugs: from Fowler's solution to modern anticancer chemotherapy; Ana M. Pizarro, Abraha Habtemariam and Peter J. Sadler : Activation Mechanisms for Organometallic Anticancer Complexes; Angela Casini, Christian G. Hartinger, Alexey A. Nazarov, Paul J. Dyson : Organometallic antitumour agents with alternative modes of action; Elizabeth A. Hillard, Anne Vessieres, Gerard Jaouen : Ferrocene functionalized endocrine modulators for the treatment of cancer; Megan Hogan and Matthias Tacke : Titanocenes - Cytotoxic and Anti-Angiogenic Chemotherapy Against Advanced Renal-Cell Cancer; Seann P. Mulcahy and Eric Meggers : Organometallics as Structural Scaffolds for Enzyme Inhibitor Design; Christophe Biot and Daniel Dive : Bioorganometallic Chemistry and Malaria; Nils Metzler-Nolte : Biomedical applications of organometal-peptide conjugates; Roger Alberto : Organometallic Radiopharmaceuticals; Brian E. Mann : Carbon Monoxide - an essential signaling molecule.
Control over macromolecular architecture and resulting material properties has been a central goal of polymer chemistry. There has been much interest in developing new synthetic routes to prepare smart materials with novel compositions and topologies for various applications. The considerable progress in the metal mediated macromolecular engineering over the past decade has had a major impact on the development of well-defined macromolecular architectures and the synthesis of smart materials. Particularly, remarkable strong developments have been observed for the synthesis of smart materials via four metal mediated macromolecular engineering techniques; Anionic, ROMP, ATRP and Click Chemistry. These materials have found uses in advanced microelectronics, technical and biomedical applications as well as in chemical sensors applications. This book is comprised of 27 chapters written by leading scientists from NATO and Partner Countries who have greatly contributed in the area of Anionic, ROMP, ATRP and Click Chemistry. It highlights the fundamental aspects and recent developments of these four powerful techniques and evaluate their potential in the syntheses of smart materials from complex structures (grafts, brushes, dendrimers, etc.) to nanostructures (self-assembly, nano-size, etc) for a wide range of applications. The book reports on the synthesis of a wide range of well-defined complex polymeric systems such as thermoresponsive smart polymers, star copolymers, biocompatible polymers, amphipilic smart nano structured, conducting polymers, self assembled polymers, and hyperbranced polymers.
Contents: Kilian Mu iz: Transition Metal Catalyzed Electrophilic Halogenation of C-H bonds in alpha-Position to Carbonyl Groups; Arkadi Vigalok * and Ariela W Kaspi: Late Transition Metal-Mediated Formation of Carbon-Halogen Bonds; Paul Bichler and Jennifer A. Love*: Organometallic Approaches to Carbon-Sulfur Bond Formation; David S. Glueck: Recent Advances in Metal-Catalyzed C-P Bond Formation; Andrei N. Vedernikov: C-O Reductive Elimination from High Valent Pt and Pd Centers; Lukas Hintermann: Recent Developments in Metal-Catalyzed Additions of Oxygen Nucleophiles to Alkenes and Alkynes; Moris S. Eisen: Catalytic C-N, C-O and C-S bond formation promoted by organoactinide complexes.
Alexander L. Reznichenko and Kai C. Hultzsch: Catalytic ?-Bond Metathesis Zhichao Zhang, Dongmei Cui, Baoli Wang, Bo Liu, Yi Yang: Polymerization of 1,3-Conjugated Dienes with Lanthanide Precursors Frank T. Edelmann: Homogeneous Catalysis using Lanthanide Amidinates and Guanidinates Tianshu Li, Jelena Jenter, Peter W. Roesky: Rare Earth Metal Post-metallocene Catalysts with Chelating Amido Ligands |
![]() ![]() You may like...
Smart Water Utilities - Complexity Made…
Pernille Ingildsen, Gustaf Olsson
Paperback
R2,411
Discovery Miles 24 110
Hildegard von Bingen - Healing and the…
Heinrich Schipperges
Hardcover
R1,244
Discovery Miles 12 440
|