![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Computer software packages > Other software packages
Multiple criteria decision aid (MCDA) methods are illustrated in this book through theoretical and computational techniques utilizing Python. Existing methods are presented in detail with a step by step learning approach. Theoretical background is given for TOPSIS, VIKOR, PROMETHEE, SIR, AHP, goal programming, and their variations. Comprehensive numerical examples are also discussed for each method in conjunction with easy to follow Python code. Extensions to multiple criteria decision making algorithms such as fuzzy number theory and group decision making are introduced and implemented through Python as well. Readers will learn how to implement and use each method based on the problem, the available data, the stakeholders involved, and the various requirements needed. Focusing on the practical aspects of the multiple criteria decision making methodologies, this book is designed for researchers, practitioners and advanced graduate students in the applied mathematics, information systems, operations research and business administration disciplines, as well as other engineers and scientists oriented in interdisciplinary research. Readers will greatly benefit from this book by learning and applying various MCDM/A methods. (Adiel Teixeira de Almeida, CDSID-Center for Decision System and Information Development, Universidade Federal de Pernambuco, Recife, Brazil) Promoting the development and application of multicriteria decision aid is essential to ensure more ethical and sustainable decisions. This book is a great contribution to this objective. It is a perfect blend of theory and practice, providing potential users and researchers with the theoretical bases of some of the best-known methods as well as with the computing tools needed to practice, to compare and to put these methods to use. (Jean-Pierre Brans, Vrije Universiteit Brussel, Brussels, Belgium) This book is intended for researchers, practitioners and students alike in decision support who wish to familiarize themselves quickly and efficiently with multicriteria decision aiding algorithms. The proposed approach is original, as it presents a selection of methods from the theory to the practical implementation in Python, including a detailed example. This will certainly facilitate the learning of these techniques, and contribute to their effective dissemination in applications. (Patrick Meyer, IMT Atlantique, Lab-STICC, Univ. Bretagne Loire, Brest, France)
This volume is composed of peer-reviewed papers that have developed from the First Conference of the International Society for NonParametric Statistics (ISNPS). This inaugural conference took place in Chalkidiki, Greece, June 15-19, 2012. It was organized with the co-sponsorship of the IMS, the ISI, and other organizations. M.G. Akritas, S.N. Lahiri, and D.N. Politis are the first executive committee members of ISNPS, and the editors of this volume. ISNPS has a distinguished Advisory Committee that includes Professors R.Beran, P.Bickel, R. Carroll, D. Cook, P. Hall, R. Johnson, B. Lindsay, E. Parzen, P. Robinson, M. Rosenblatt, G. Roussas, T. SubbaRao, and G. Wahba. The Charting Committee of ISNPS consists of more than 50 prominent researchers from all over the world. The chapters in this volume bring forth recent advances and trends in several areas of nonparametric statistics. In this way, the volume facilitates the exchange of research ideas, promotes collaboration among researchers from all over the world, and contributes to the further development of the field.The conference program included over 250 talks, including special invited talks, plenary talks, and contributed talks on all areas of nonparametric statistics. Out of these talks, some of the most pertinent ones have been refereed and developed into chapters that share both research and developments in the field.
Over the past decade, there has been an increase in attention and focus on the discipline of software engineering. Software engineering tools and techniques have been developed to gain more predictable quality improvement results. Process standards such as Capability Maturity Model Integration (CMMI), ISO 9000, Software Process Improvement and Capability dEtermination (SPICE), Agile Methodologies, and others have been proposed to assist organizations to achieve more predictable results by incorporating these proven standards and procedures into their software process. Software Process Improvement and Management: Approaches and Tools for Practical Development offers the latest research and case studies on software engineering and development. The production of new process standards assist organizations and software engineers in adding a measure of predictability to the software process. Companies can gain a decisive competitive advantage by applying these new and theoretical methodologies in real-world scenarios. Researchers, scholars, practitioners, students, and anyone interested in the field of software development and design should access this book as a major compendium of the latest research in the field.
This book focuses on the application and development of information geometric methods in the analysis, classification and retrieval of images and signals. It provides introductory chapters to help those new to information geometry and applies the theory to several applications. This area has developed rapidly over recent years, propelled by the major theoretical developments in information geometry, efficient data and image acquisition and the desire to process and interpret large databases of digital information. The book addresses both the transfer of methodology to practitioners involved in database analysis and in its efficient computational implementation.
This book examines current topics and trends in strategic auditing, accounting and finance in digital transformation both from a theoretical and practical perspective. It covers areas such as internal control, corporate governance, enterprise risk management, sustainability and competition. The contributors of this volume emphasize how strategic approaches in this area help companies in achieving targets. The contributions illustrate how by providing good governance, reliable financial reporting, and accountability, businesses can win a competitive advantage. It further discusses how new technological developments like artificial intelligence (AI), cybersystems, network technologies, financial mobility and smart applications, will shape the future of accounting and auditing for firms.
This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. Rather than providing an encyclopedic review of probability models, the book's structure follows a data analysis perspective. As such, the chapters are organized by traditional data analysis problems. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones. The discussed methods are illustrated with a wealth of examples, including applications ranging from stylized examples to case studies from recent literature. The book also includes an extensive discussion of computational methods and details on their implementation. R code for many examples is included in online software pages.
This book provides a general framework for learning sparse graphical models with conditional independence tests. It includes complete treatments for Gaussian, Poisson, multinomial, and mixed data; unified treatments for covariate adjustments, data integration, and network comparison; unified treatments for missing data and heterogeneous data; efficient methods for joint estimation of multiple graphical models; effective methods of high-dimensional variable selection; and effective methods of high-dimensional inference. The methods possess an embarrassingly parallel structure in performing conditional independence tests, and the computation can be significantly accelerated by running in parallel on a multi-core computer or a parallel architecture. This book is intended to serve researchers and scientists interested in high-dimensional statistics, and graduate students in broad data science disciplines. Key Features: A general framework for learning sparse graphical models with conditional independence tests Complete treatments for different types of data, Gaussian, Poisson, multinomial, and mixed data Unified treatments for data integration, network comparison, and covariate adjustment Unified treatments for missing data and heterogeneous data Efficient methods for joint estimation of multiple graphical models Effective methods of high-dimensional variable selection Effective methods of high-dimensional inference
Dynamic Business Process Formation fuses practical needs with theoretical input to present important research innovations in supporting Instant Virtual Enterprises (IVEs). This new organization type brings a combination of business dynamism and explicit business process structure to domains where on-the-fly formation of well-organized business networks is required to deal with the complexity of new products or services under high time pressure. This book contains the main results of the IST CrossWork project, and, importantly, looks beyond the boundaries of this project and sources input from related projects and general trends in collaborative enterprises and the automotive industry. Both the business and technical aspects of Virtual Enterprise coordination are covered within the modular structure of the book, which enables readers from different backgrounds to benefit from the book according to their interests.
The book covers a wide range of topics, yet essential, in Computational Finance (CF), understood as a mix of Finance, Computational Statistics, and Mathematics of Finance. In that regard it is unique in its kind, for it touches upon the basic principles of all three main components of CF, with hands-on examples for programming models in R. Thus, the first chapter gives an introduction to the Principles of Corporate Finance: the markets of stock and options, valuation and economic theory, framed within Computation and Information Theory (e.g. the famous Efficient Market Hypothesis is stated in terms of computational complexity, a new perspective). Chapters 2 and 3 give the necessary tools of Statistics for analyzing financial time series, it also goes in depth into the concepts of correlation, causality and clustering. Chapters 4 and 5 review the most important discrete and continuous models for financial time series. Each model is provided with an example program in R. Chapter 6 covers the essentials of Technical Analysis (TA) and Fundamental Analysis. This chapter is suitable for people outside academics and into the world of financial investments, as a primer in the methods of charting and analysis of value for stocks, as it is done in the financial industry. Moreover, a mathematical foundation to the seemly ad-hoc methods of TA is given, and this is new in a presentation of TA. Chapter 7 reviews the most important heuristics for optimization: simulated annealing, genetic programming, and ant colonies (swarm intelligence) which is material to feed the computer savvy readers. Chapter 8 gives the basic principles of portfolio management, through the mean-variance model, and optimization under different constraints which is a topic of current research in computation, due to its complexity. One important aspect of this chapter is that it teaches how to use the powerful tools for portfolio analysis from the RMetrics R-package. Chapter 9 is a natural continuation of chapter 8 into the new area of research of online portfolio selection. The basic model of the universal portfolio of Cover and approximate methods to computeare alsodescribed."
This book presents selected peer-reviewed contributions from the International Work-Conference on Time Series, ITISE 2017, held in Granada, Spain, September 18-20, 2017. It discusses topics in time series analysis and forecasting, including advanced mathematical methodology, computational intelligence methods for time series, dimensionality reduction and similarity measures, econometric models, energy time series forecasting, forecasting in real problems, online learning in time series as well as high-dimensional and complex/big data time series. The series of ITISE conferences provides a forum for scientists, engineers, educators and students to discuss the latest ideas and implementations in the foundations, theory, models and applications in the field of time series analysis and forecasting. It focuses on interdisciplinary and multidisciplinary research encompassing computer science, mathematics, statistics and econometrics.
R is a powerful and free software system for data analysis and graphics, with over 5,000 add-on packages available. This book introduces R using SAS and SPSS terms with which you are already familiar. It demonstrates which of the add-on packages are most like SAS and SPSS and compares them to R's built-in functions. It steps through over 30 programs written in all three packages, comparing and contrasting the packages' differing approaches. The programs and practice datasets are available for download. The glossary defines over 50 R terms using SAS/SPSS jargon and again using R jargon. The table of contents and the index allow you to find equivalent R functions by looking up both SAS statements and SPSS commands. When finished, you will be able to import data, manage and transform it, create publication quality graphics, and perform basic statistical analyses. This new edition has updated programming, an expanded index, and even more statistical methods covered in over 25 new sections.
Adaptive Technologies and Business Integration: Social, Managerial and Organizational Dimensions provides an authoritative review of both intra-organizational and inter-organizational aspects in business integration, including: managerial and organizational integration, social integration, and technology integration, along with the resources to accomplish this competitive advantage. This Premier Reference Source contains the most comprehensive knowledge on business integration. It provides an all-encompassing perspective on the importance of business integration in the emerging networked, extended, and collaborative organizational models. The innovative research contained in this reference work make it an essential addition to every library.
This volume presents the latest advances and trends in nonparametric statistics, and gathers selected and peer-reviewed contributions from the 3rd Conference of the International Society for Nonparametric Statistics (ISNPS), held in Avignon, France on June 11-16, 2016. It covers a broad range of nonparametric statistical methods, from density estimation, survey sampling, resampling methods, kernel methods and extreme values, to statistical learning and classification, both in the standard i.i.d. case and for dependent data, including big data. The International Society for Nonparametric Statistics is uniquely global, and its international conferences are intended to foster the exchange of ideas and the latest advances among researchers from around the world, in cooperation with established statistical societies such as the Institute of Mathematical Statistics, the Bernoulli Society and the International Statistical Institute. The 3rd ISNPS conference in Avignon attracted more than 400 researchers from around the globe, and contributed to the further development and dissemination of nonparametric statistics knowledge.
This book presents various recently developed and traditional statistical techniques, which are increasingly being applied in social science research. The social sciences cover diverse phenomena arising in society, the economy and the environment, some of which are too complex to allow concrete statements; some cannot be defined by direct observations or measurements; some are culture- (or region-) specific, while others are generic and common. Statistics, being a scientific method - as distinct from a 'science' related to any one type of phenomena - is used to make inductive inferences regarding various phenomena. The book addresses both qualitative and quantitative research (a combination of which is essential in social science research) and offers valuable supplementary reading at an advanced level for researchers.
"We live in the age of data. In the last few years, the methodology of extracting insights from data or "data science" has emerged as a discipline in its own right. The R programming language has become one-stop solution for all types of data analysis. The growing popularity of R is due its statistical roots and a vast open source package library. The goal of "Beginning Data Science with R" is to introduce the readers to some of the useful data science techniques and their implementation with the R programming language. The book attempts to strike a balance between the how: specific processes and methodologies, and understanding the why: going over the intuition behind how a particular technique works, so that the reader can apply it to the problem at hand. This book will be useful for readers who are not familiar with statistics and the R programming language.
This book presents the R software environment as a key tool for oceanographic computations and provides a rationale for using R over the more widely-used tools of the field such as MATLAB. Kelley provides a general introduction to R before introducing the 'oce' package. This package greatly simplifies oceanographic analysis by handling the details of discipline-specific file formats, calculations, and plots. Designed for real-world application and developed with open-source protocols, oce supports a broad range of practical work. Generic functions take care of general operations such as subsetting and plotting data, while specialized functions address more specific tasks such as tidal decomposition, hydrographic analysis, and ADCP coordinate transformation. In addition, the package makes it easy to document work, because its functions automatically update processing logs stored within its data objects. Kelley teaches key R functions using classic examples from the history of oceanography, specifically the work of Alfred Redfield, Gordon Riley, J. Tuzo Wilson, and Walter Munk. Acknowledging the pervasive popularity of MATLAB, the book provides advice to users who would like to switch to R. Including a suite of real-life applications and over 100 exercises and solutions, the treatment is ideal for oceanographers, technicians, and students who want to add R to their list of tools for oceanographic analysis.
Throughout the world, high-profile large organizations (aerospace
and defense, automotive, banking, chemicals, financial service
providers, healthcare, high tech, insurance, oil and gas,
pharmaceuticals, retail, telecommunications, and utilities) and
governments are using SAP software to process their most
mission-critical, highly sensitive data. With more than 100,000
installations, SAP is the world's largest enterprise software
company and the world's third largest independent software supplier
overall.
Scientific Data Analysis using Jython Scripting and Java presents practical approaches for data analysis using Java scripting based on Jython, a Java implementation of the Python language. The chapters essentially cover all aspects of data analysis, from arrays and histograms to clustering analysis, curve fitting, metadata and neural networks. A comprehensive coverage of data visualisation tools implemented in Java is also included. Written by the primary developer of the jHepWork data-analysis framework, the book provides a reliable and complete reference source laying the foundation for data-analysis applications using Java scripting. More than 250 code snippets (of around 10-20 lines each) written in Jython and Java, plus several real-life examples help the reader develop a genuine feeling for data analysis techniques and their programming implementation. This is the first data-analysis and data-mining book which is completely based on the Jython language, and opens doors to scripting using a fully multi-platform and multi-threaded approach. Graduate students and researchers will benefit from the information presented in this book.
This book introduces the basic methodologies for successful data analytics. Matrix optimization and approximation are explained in detail and extensively applied to dimensionality reduction by principal component analysis and multidimensional scaling. Diffusion maps and spectral clustering are derived as powerful tools. The methodological overlap between data science and machine learning is emphasized by demonstrating how data science is used for classification as well as supervised and unsupervised learning.
Digital Accounting: The Effects of the Internet and ERP on Accounting provides a foundation in digital accounting by covering fundamental topics such as accounting software, XBRL (eXtensible Business Reporting Language), and EDI. The effects of the Internet and ERP on accounting are classified and presented for each accounting cycle, along with a comprehensive discussion of online controls. ""Digital Accounting: The Effects of the Internet and ERP on Accounting"" provides a conceptual approach to handling the latest developments at the intersection of the accounting and IT fields.
later versions. In addition, the CD-ROM contains a complete solutions manual that includes detailed solutions to all the problems in the book. If the reader does not wish to consult these solutions, then a brief list of answers is provided in printed form at the end of the book. Iwouldliketothankmyfamilymembersfortheirhelpandcontinuedsupportwi- out which this book would not have been possible. I would also like to acknowledge the help of the editior at Springer-Verlag (Dr. Thomas Ditzinger) for his assistance in bringing this book out in its present form. Finally, I would like to thank my brother, Nicola, for preparing most of the line drawings in both editions. In this edition, I am providing two email addresses for my readers to contact me (pkattan@tedata. net. jo and pkattan@lsu. edu). The old email address that appeared in the ?rst edition was cancelled in 2004. December 2006 Peter I. Kattan PrefacetotheFirstEdition 3 This is a book for people who love ?nite elements and MATLAB . We will use the popular computer package MATLAB as a matrix calculator for doing ?nite element analysis. Problems will be solved mainly using MATLAB to carry out the tedious and lengthy matrix calculations in addition to some manual manipulations especially when applying the boundary conditions. In particular the steps of the ?nite element method are emphasized in this book. The reader will not ?nd ready-made MATLAB programsforuseasblackboxes. Insteadstep-by-stepsolutionsof?niteelementpr- lems are examined in detail using MATLAB.
This book presents computer programming as a key method for solving mathematical problems. There are two versions of the book, one for MATLAB and one for Python. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows the students to write simple programs for solving common mathematical problems with numerical methods in engineering and science courses. The emphasis is on generic algorithms, clean design of programs, use of functions, and automatic tests for verification.
This book provides a complete and comprehensive guide to Pyomo (Python Optimization Modeling Objects) for beginning and advanced modelers, including students at the undergraduate and graduate levels, academic researchers, and practitioners. Using many examples to illustrate the different techniques useful for formulating models, this text beautifully elucidates the breadth of modeling capabilities that are supported by Pyomo and its handling of complex real-world applications. In the third edition, much of the material has been reorganized, new examples have been added, and a new chapter has been added describing how modelers can improve the performance of their models. The authors have also modified their recommended method for importing Pyomo. A big change in this edition is the emphasis of concrete models, which provide fewer restrictions on the specification and use of Pyomo models. Pyomo is an open source software package for formulating and solving large-scale optimization problems. The software extends the modeling approach supported by modern AML (Algebraic Modeling Language) tools. Pyomo is a flexible, extensible, and portable AML that is embedded in Python, a full-featured scripting language. Python is a powerful and dynamic programming language that has a very clear, readable syntax and intuitive object orientation. Pyomo includes Python classes for defining sparse sets, parameters, and variables, which can be used to formulate algebraic expressions that define objectives and constraints. Moreover, Pyomo can be used from a command-line interface and within Python's interactive command environment, which makes it easy to create Pyomo models, apply a variety of optimizers, and examine solutions. |
![]() ![]() You may like...
Internet Mercenaries and Viral Marketing…
Mei Wu, Peter Jakubowicz, …
Hardcover
R4,820
Discovery Miles 48 200
Statistical Mechanics - A Short Treatise
Giovanni Gallavotti
Hardcover
R3,155
Discovery Miles 31 550
Polymer Crystallization II - From Chain…
Finizia Auriemma, Giovanni Carlo Alfonso, …
Hardcover
R7,377
Discovery Miles 73 770
CSSLP Certified Secure Software…
Wm. Arthur Conklin, Daniel Shoemaker
Paperback
R1,174
Discovery Miles 11 740
|