![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Computer software packages > Other software packages
This open access book provides a wealth of hands-on examples that illustrate how hyperparameter tuning can be applied in practice and gives deep insights into the working mechanisms of machine learning (ML) and deep learning (DL) methods. The aim of the book is to equip readers with the ability to achieve better results with significantly less time, costs, effort and resources using the methods described here. The case studies presented in this book can be run on a regular desktop or notebook computer. No high-performance computing facilities are required. The idea for the book originated in a study conducted by Bartz & Bartz GmbH for the Federal Statistical Office of Germany (Destatis). Building on that study, the book is addressed to practitioners in industry as well as researchers, teachers and students in academia. The content focuses on the hyperparameter tuning of ML and DL algorithms, and is divided into two main parts: theory (Part I) and application (Part II). Essential topics covered include: a survey of important model parameters; four parameter tuning studies and one extensive global parameter tuning study; statistical analysis of the performance of ML and DL methods based on severity; and a new, consensus-ranking-based way to aggregate and analyze results from multiple algorithms. The book presents analyses of more than 30 hyperparameters from six relevant ML and DL methods, and provides source code so that users can reproduce the results. Accordingly, it serves as a handbook and textbook alike.
Stata is the most flexible and extensible data analysis package available from a commercial vendor. R is a similarly flexible free and open source package for data analysis, with over 3,000 add-on packages available. This book shows you how to extend the power of Stata through the use of R. It introduces R using Stata terminology with which you are already familiar. It steps through more than 30 programs written in both languages, comparing and contrasting the two packages' different approaches. When finished, you will be able to use R in conjunction with Stata, or separately, to import data, manage and transform it, create publication quality graphics, and perform basic statistical analyses. A glossary defines over 50 R terms using Stata jargon and again using more formal R terminology. The table of contents and index allow you to find equivalent R functions by looking up Stata commands and vice versa. The example programs and practice datasets for both R and Stata are available for download.
Soft computing techniques are innovative tools that use nature-inspired algorithms to run predictive analysis of industries from business to software measurement. These tools have gained momentum in recent years for their practicality and flexibility. The Handbook of Research on Fuzzy and Rough Set Theory in Organizational Decision Making collects both empirical and applied research in the field of fuzzy set theory, and bridges the gap between the application of soft computational approaches and the organizational decision making process. This publication is a pivotal reference for business professionals, IT specialists, software engineers, and advanced students of business and information technology.
Nonlinear physics continues to be an area of dynamic modern research, with applications to physics, engineering, chemistry, mathematics, computer science, biology, medicine and economics. In this text extensive use is made of the Mathematica computer algebra system. No prior knowledge of Mathematica or programming is assumed. The authors have included a CD-ROM that contains over 130 annotated Mathematica files. These files may be used to solve and explore the text's 400 problems. This book includes 33 experimental activities that are designed to deepen and broaden the reader's understanding of nonlinear physics. These activities are correlated with Part I, the theoretical framework of the text. Additional features: * User-friendly, accessible presentation integrating theory, experiments, and the provided Mathematica notebooks; as the concepts of nonlinear science are developed, readers are gently introduced to Mathematica as an auxiliary tool * CD-ROM includes a wide variety of illustrative nonlinear examples solved with Mathematica--command structures introduced on a need-to-know basis * Notebooks designed to make use of Mathematica's sound capability * Mathematica notebook using the EulerEquation command incorporated into the text This work is an excellent text for undergraduate and graduate students as well as a useful resource for working scientists. Reviewer comments on the Maple edition of NONLINEAR PHYSICS: "An...excellent book...the authors have been able to cover an extraordinary range of topics and hopefully excite a wide audience to investigate nonlinear phenomena...accessible to advanced undergraduates and yet challenging enough for graduate students and workingscientists.... The reader is guided through it all with sound advice and humor.... I hope that many will adopt the text." -American Journal of Physics "Its organization of subject matter, clarity of writing, and smooth integration of analytic and computational techniques put it among the very best...Richard Enns and George McGuire have written an excellent text for introductory nonlinear physics." -Computers in Physics,.".correctly balances a good treatment of nonlinear, but also nonchaotic, behavior of systems with some of the exciting findings about chaotic dynamics...one of the book's strength is the diverse selection of examples from mechanical, chemical, electronic, fluid and many other systems .... Another strength of the book is the diversity of approaches that the student is encouraged to take...the authors have chosen well, and the trio of text, ...software, and lab manual gives the newcomer to nonlinear physics quite an effective set of tools.... Basic ideas are explained clearly and illustrated with many examples." -Physics Today,.". the care that the authors have taken to ensure that their text is as comprehensive, versatile, interactive, and student-friendly as possible place this book far above the average." -Scientific Computing World
This proceedings volume gathers selected, peer-reviewed papers presented at the 41st International Conference on Infinite Dimensional Analysis, Quantum Probability and Related Topics (QP41) that was virtually held at the United Arab Emirates University (UAEU) in Al Ain, Abu Dhabi, from March 28th to April 1st, 2021. The works cover recent developments in quantum probability and infinite dimensional analysis, with a special focus on applications to mathematical physics and quantum information theory. Covered topics include white noise theory, quantum field theory, quantum Markov processes, free probability, interacting Fock spaces, and more. By emphasizing the interconnection and interdependence of such research topics and their real-life applications, this reputed conference has set itself as a distinguished forum to communicate and discuss new findings in truly relevant aspects of theoretical and applied mathematics, notably in the field of mathematical physics, as well as an event of choice for the promotion of mathematical applications that address the most relevant problems found in industry. That makes this volume a suitable reading not only for researchers and graduate students with an interest in the field but for practitioners as well.
Service-oriented computing has recently gained extensive momentum in both industry and academia, and major software vendors hook on to the service paradigm and tailor their software systems towards services in order to accommodate ever-changing process and product requirements in today s dynamic market environments. While dynamic binding of services at runtime was identified as a core functionality of service-based environments as far back as 2000, its industrial-strength implementation has yet to be achieved. The main reason for this is the lack of rich service specifications, concepts, and tools to process them. This book introduces advanced concepts in service provisioning and service engineering, including semantic concepts, dynamic discovery and composition, and illustrates them in a concrete business use case scenario. To prove the validity of the concepts and technologies, a semantic service provisioning reference architecture framework as well as a prototypical implementation of its subsystems and a prototypical realization of a proper business scenario are presented. Thus the book goes way beyond current service-based software technologies by providing a coherent and consistent set of technologies and systems functionality that realizes advanced concepts in service provisioning. Both the use case scenario and the provisioning platform have already been substantiated and implemented by the EU-funded Adaptive Services Grid project. The book therefore presents state-of-the-art research results that have already passed a real industrial implementation evaluation which is based on the work of over 20 European partners cooperating in the field of semantic service provisioning."
This book develops survey data analysis tools in Python, to create and analyze cross-tab tables and data visuals, weight data, perform hypothesis tests, and handle special survey questions such as Check-all-that-Apply. In addition, the basics of Bayesian data analysis and its Python implementation are presented. Since surveys are widely used as the primary method to collect data, and ultimately information, on attitudes, interests, and opinions of customers and constituents, these tools are vital for private or public sector policy decisions. As a compact volume, this book uses case studies to illustrate methods of analysis essential for those who work with survey data in either sector. It focuses on two overarching objectives: Demonstrate how to extract actionable, insightful, and useful information from survey data; and Introduce Python and Pandas for analyzing survey data.
Combining theoretical and practical aspects of topology, this book provides a comprehensive and self-contained introduction to topological methods for the analysis and visualization of scientific data. Theoretical concepts are presented in a painstaking but intuitive manner, with numerous high-quality color illustrations. Key algorithms for the computation and simplification of topological data representations are described in detail, and their application is carefully demonstrated in a chapter dedicated to concrete use cases. With its fine balance between theory and practice, "Topological Data Analysis for Scientific Visualization" constitutes an appealing introduction to the increasingly important topic of topological data analysis for lecturers, students and researchers.
Optimal State Estimation for Process Monitoring, Fault Diagnosis and Control presents various mechanistic model based state estimators and data-driven model based state estimators with a special emphasis on their development and applications to process monitoring, fault diagnosis and control. The design and analysis of different state estimators are highlighted with a number of applications and case studies concerning to various real chemical and biochemical processes. The book starts with the introduction of basic concepts, extending to classical methods and successively leading to advances in this field. Design and implementation of various classical and advanced state estimation methods to solve a wide variety of problems makes this book immensely useful for the audience working in different disciplines in academics, research and industry in areas concerning to process monitoring, fault diagnosis, control and related disciplines.
This book includes a wide selection of the papers presented at the 48th Scientific Meeting of the Italian Statistical Society (SIS2016), held in Salerno on 8-10 June 2016. Covering a wide variety of topics ranging from modern data sources and survey design issues to measuring sustainable development, it provides a comprehensive overview of the current Italian scientific research in the fields of open data and big data in public administration and official statistics, survey sampling, ordinal and symbolic data, statistical models and methods for network data, time series forecasting, spatial analysis, environmental statistics, economic and financial data analysis, statistics in the education system, and sustainable development. Intended for researchers interested in theoretical and empirical issues, this volume provides interesting starting points for further research.
This book is the third edition of a successful textbook for upper-undergraduate and early graduate students, which offers a solid foundation in probability theory and statistics and their application to physical sciences, engineering, biomedical sciences and related disciplines. It provides broad coverage ranging from conventional textbook content of probability theory, random variables, and their statistics, regression, and parameter estimation, to modern methods including Monte-Carlo Markov chains, resampling methods and low-count statistics. In addition to minor corrections and adjusting structure of the content, particular features in this new edition include: Python codes and machine-readable data for all examples, classic experiments, and exercises, which are now more accessible to students and instructors New chapters on low-count statistics including the Poisson-based Cash statistic for regression in the low-count regime, and on contingency tables and diagnostic testing. An additional example of classic experiments based on testing data for SARS-COV-2 to demonstrate practical applications of the described statistical methods. This edition inherits the main pedagogical method of earlier versions-a theory-then-application approach-where emphasis is placed first on a sound understanding of the underlying theory of a topic, which becomes the basis for an efficient and practical application of the materials. Basic calculus is used in some of the derivations, and no previous background in probability and statistics is required. The book includes many numerical tables of data as well as exercises and examples to aid the readers' understanding of the topic.
This is the first textbook that allows readers who may be unfamiliar with matrices to understand a variety of multivariate analysis procedures in matrix forms. By explaining which models underlie particular procedures and what objective function is optimized to fit the model to the data, it enables readers to rapidly comprehend multivariate data analysis. Arranged so that readers can intuitively grasp the purposes for which multivariate analysis procedures are used, the book also offers clear explanations of those purposes, with numerical examples preceding the mathematical descriptions. Supporting the modern matrix formulations by highlighting singular value decomposition among theorems in matrix algebra, this book is useful for undergraduate students who have already learned introductory statistics, as well as for graduate students and researchers who are not familiar with matrix-intensive formulations of multivariate data analysis. The book begins by explaining fundamental matrix operations and the matrix expressions of elementary statistics. Then, it offers an introduction to popular multivariate procedures, with each chapter featuring increasing advanced levels of matrix algebra. Further the book includes in six chapters on advanced procedures, covering advanced matrix operations and recently proposed multivariate procedures, such as sparse estimation, together with a clear explication of the differences between principal components and factor analyses solutions. In a nutshell, this book allows readers to gain an understanding of the latest developments in multivariate data science.
AI, Edge, and IoT Smart Agriculture integrates applications of IoT, edge computing, and data analytics for sustainable agricultural development and introduces Edge of Thing-based data analytics and IoT for predictability of crop, soil, and plant disease occurrence for improved sustainability and increased profitability. The book also addresses precision irrigation, precision horticulture, greenhouse IoT, livestock monitoring, IoT ecosystem for agriculture, mobile robot for precision agriculture, energy monitoring, storage management, and smart farming. The book provides an overarching focus on sustainable environment and sustainable economic development through smart and e-agriculture. Providing a medium for the exchange of expertise and inspiration, contributions from both smart agriculture and data mining researchers around the world provide foundational insights. The book provides practical application opportunities for the resolution of real-world problems, including contributions from the data mining, data analytics, Edge of Things, and cloud research communities working in the farming production sector. The book offers broad coverage of the concepts, themes, and instruments of this important and evolving area of IOT-based agriculture, Edge of Things and cloud-based farming, Greenhouse IOT, mobile agriculture, sustainable agriculture, and big data analytics in agriculture toward smart farming.
Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, Three Volume Set combines elements of computer science, information technology, mathematics, statistics and biotechnology, providing the methodology and in silico solutions to mine biological data and processes. The book covers Theory, Topics and Applications, with a special focus on Integrative -omics and Systems Biology. The theoretical, methodological underpinnings of BCB, including phylogeny are covered, as are more current areas of focus, such as translational bioinformatics, cheminformatics, and environmental informatics. Finally, Applications provide guidance for commonly asked questions. This major reference work spans basic and cutting-edge methodologies authored by leaders in the field, providing an invaluable resource for students, scientists, professionals in research institutes, and a broad swath of researchers in biotechnology and the biomedical and pharmaceutical industries.
Quantitative Analysis and Modeling of Earth and Environmental Data: Space-Time and Spacetime Data Considerations introduces the notion of chronotopologic data analysis that offers a systematic, quantitative analysis of multi-sourced data and provides information about the spatial distribution and temporal dynamics of natural attributes (physical, biological, health, social). It includes models and techniques for handling data that may vary by space and/or time, and aims to improve understanding of the physical laws of change underlying the available numerical datasets, while taking into consideration the in-situ uncertainties and relevant measurement errors (conceptual, technical, computational). It considers the synthesis of scientific theory-based methods (stochastic modeling, modern geostatistics) and data-driven techniques (machine learning, artificial neural networks) so that their individual strengths are combined by acting symbiotically and complementing each other. The notions and methods presented in Quantitative Analysis and Modeling of Earth and Environmental Data: Space-Time and Spacetime Data Considerations cover a wide range of data in various forms and sources, including hard measurements, soft observations, secondary information and auxiliary variables (ground-level measurements, satellite observations, scientific instruments and records, protocols and surveys, empirical models and charts). Including real-world practical applications as well as practice exercises, this book is a comprehensive step-by-step tutorial of theory-based and data-driven techniques that will help students and researchers master data analysis and modeling in earth and environmental sciences (including environmental health and human exposure applications).
This book provides an accessible introduction and practical guidelines to apply asymmetric multidimensional scaling, cluster analysis, and related methods to asymmetric one-mode two-way and three-way asymmetric data. A major objective of this book is to present to applied researchers a set of methods and algorithms for graphical representation and clustering of asymmetric relationships. Data frequently concern measurements of asymmetric relationships between pairs of objects from a given set (e.g., subjects, variables, attributes,...), collected in one or more matrices. Examples abound in many different fields such as psychology, sociology, marketing research, and linguistics and more recently several applications have appeared in technological areas including cybernetics, air traffic control, robotics, and network analysis. The capabilities of the presented algorithms are illustrated by carefully chosen examples and supported by extensive data analyses. A review of the specialized statistical software available for the applications is also provided. This monograph is highly recommended to readers who need a complete and up-to-date reference on methods for asymmetric proximity data analysis.
This "hands-on" book is for people who are interested in immediately putting Maple to work. The reader is provided with a compact, fast and surveyable guide that introduces them to the extensive capabilities of the software. The book is sufficient for standard use of Maple and will provide techniques for extending Maple for more specialized work. The author discusses the reliability of results systematically and presents ways of testing questionable results. The book allows a reader to become a user almost immediately and helps him/her to grow gradually to a broader and more proficient use. As a consequence, some subjects are dealt with in an introductory way early in the book, with references to a more detailed discussion later on.
This book offers a systematic and rigorous treatment of continuous-time Markov decision processes, covering both theory and possible applications to queueing systems, epidemiology, finance, and other fields. Unlike most books on the subject, much attention is paid to problems with functional constraints and the realizability of strategies. Three major methods of investigations are presented, based on dynamic programming, linear programming, and reduction to discrete-time problems. Although the main focus is on models with total (discounted or undiscounted) cost criteria, models with average cost criteria and with impulsive controls are also discussed in depth. The book is self-contained. A separate chapter is devoted to Markov pure jump processes and the appendices collect the requisite background on real analysis and applied probability. All the statements in the main text are proved in detail. Researchers and graduate students in applied probability, operational research, statistics and engineering will find this monograph interesting, useful and valuable.
This book provides a reference for people working in the design, development, and manufacturing of medical devices. While there are no statistical methods specifically intended for medical devices, there are methods that are commonly applied to various problems in the design, manufacturing, and quality control of medical devices. The aim of this book is not to turn everyone working in the medical device industries into mathematical statisticians; rather, the goal is to provide some help in thinking statistically, and knowing where to go to answer some fundamental questions, such as justifying a method used to qualify/validate equipment, or what information is necessary to support the choice of sample sizes. While, there are no statistical methods specifically designed for analysis of medical device data, there are some methods that seem to appear regularly in relation to medical devices. For example, the assessment of receiver operating characteristic curves is fundamental to development of diagnostic tests, and accelerated life testing is often critical for assessing the shelf life of medical device products. Another example is sensitivity/specificity computations are necessary for in-vitro diagnostics, and Taguchi methods can be very useful for designing devices. Even notions of equivalence and noninferiority have different interpretations in the medical device field compared to pharmacokinetics. It contains topics such as dynamic modeling, machine learning methods, equivalence testing, and experimental design, for example. This book is for those with no statistical experience, as well as those with statistical knowledgeable—with the hope to provide some insight into what methods are likely to help provide rationale for choices relating to data gathering and analysis activities for medical devices.
The rapid development of artificial intelligence technology in medical data analysis has led to the concept of radiomics. This book introduces the essential and latest technologies in radiomics, such as imaging segmentation, quantitative imaging feature extraction, and machine learning methods for model construction and performance evaluation, providing invaluable guidance for the researcher entering the field. It fully describes three key aspects of radiomic clinical practice: precision diagnosis, the therapeutic effect, and prognostic evaluation, which make radiomics a powerful tool in the clinical setting. This book is a very useful resource for scientists and computer engineers in machine learning and medical image analysis, scientists focusing on antineoplastic drugs, and radiologists, pathologists, oncologists, as well as surgeons wanting to understand radiomics and its potential in clinical practice. |
![]() ![]() You may like...
The Comics of Julie Doucet and Gabrielle…
Tahneer Oksman, Seamus O'Malley
Hardcover
R3,202
Discovery Miles 32 020
Mathematical Topics on Representations…
Gianni Bosi, Maria J. Campion, …
Hardcover
R2,932
Discovery Miles 29 320
Grouping Genetic Algorithms - Advances…
Michael Mutingi, Charles Mbohwa
Hardcover
R4,597
Discovery Miles 45 970
Slavery and Other Forms of Strong…
Jeannine Bischoff, Stephan Conermann
Hardcover
R2,304
Discovery Miles 23 040
|