![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Computer software packages > Other software packages
The International Federation for Information Processing, IFIP, is a multinational federation of professional technical organisations concerned with information processing. IFIP is dedicated to improving communication and increased understanding among practitioners of all nations about the role information processing can play in all walks of life. This Working Conference, Secondary School Mathematics in the World of Communication Technologies: Learning, Teaching and the Curriculum, was organised by Working Group 3.1, Informatics in Secondary Education, ofiFIP Technical Committee for Education, TC3. This is the third conference on this theme organised by WG 3.1, the previous two were held in Varna, Bulgaria, 1977, and Sofia, Bulgaria, 1987-proceedings published by North-Holland Elsevier. The aim of the conference was to take a forward look at the issue of the relationships between mathematics and the new technologies of information and communication in the context of the increased availability of interactive and dynamic information processing tools. The main focus was on the mathematics education of students in the age range of about ll to 18 years and the following themes were addressed: * Curriculum: curriculum evolution; relationships with informatics; * Teachers: professional development; methodology and practice; * Learners: tools and techniques; concept development; research and theory; * Human and social issues: culture and policy; personal impact.
Accessible to a general audience with some background in statistics and computing Many examples and extended case studies Illustrations using R and Rstudio A true blend of statistics and computer science -- not just a grab bag of topics from each
A Guide to Doing Statistics in Second Language Research Using SPSS and R, Second Edition is the only text available that demonstrates how to use SPSS and R as specifically related to applied linguistics and SLA research. This new edition is up-to-date with the most recent version of the SPSS software and now also includes coverage of R, a software program increasingly used by researchers in this field. Supported by a number of pedagogical features, including tip boxes and practice activities, and a wealth of screenshots, this book takes readers through each step of performing and understanding statistical research, covering the most commonly used tests in second language research, including t-tests, correlation, and ANOVA. A robust accompanying website covers additional tests of interest to students and researchers, taking them step-by-step through carrying out these tests themselves. In this comprehensive and hands-on volume, Jenifer Larson-Hall equips readers with a thorough understanding and the practical skills necessary to conducting and interpreting statisical research effectively using SPSS and R, ideal for graduate students and researchers in SLA, social sciences, and applied lingustics. For more information and materials, please visit www.routledge.com/cw/larson-hall.
Multilevel and Longitudinal Modeling with IBM SPSS, Third Edition, demonstrates how to use the multilevel and longitudinal modeling techniques available in IBM SPSS Versions 25-27. Annotated screenshots with all relevant output provide readers with a step-by-step understanding of each technique as they are shown how to navigate the program. Throughout, diagnostic tools, data management issues, and related graphics are introduced. SPSS commands show the flow of the menu structure and how to facilitate model building, while annotated syntax is also available for those who prefer this approach. Extended examples illustrating the logic of model development and evaluation are included throughout the book, demonstrating the context and rationale of the research questions and the steps around which the analyses are structured. The book opens with the conceptual and methodological issues associated with multilevel and longitudinal modeling, followed by a discussion of SPSS data management techniques that facilitate working with multilevel, longitudinal, or cross-classified data sets. The next few chapters introduce the basics of multilevel modeling, developing a multilevel model, extensions of the basic two-level model (e.g., three-level models, models for binary and ordinal outcomes), and troubleshooting techniques for everyday-use programming and modeling problems along with potential solutions. Models for investigating individual and organizational change are next developed, followed by models with multivariate outcomes and, finally, models with cross-classified and multiple membership data structures. The book concludes with thoughts about ways to expand on the various multilevel and longitudinal modeling techniques introduced and issues (e.g., missing data, sample weights) to keep in mind in conducting multilevel analyses. Key features of the third edition: Thoroughly updated throughout to reflect IBM SPSS Versions 26-27. Introduction to fixed-effects regression for examining change over time where random-effects modeling may not be an optimal choice. Additional treatment of key topics specifically aligned with multilevel modeling (e.g., models with binary and ordinal outcomes). Expanded coverage of models with cross-classified and multiple membership data structures. Added discussion on model checking for improvement (e.g., examining residuals, locating outliers). Further discussion of alternatives for dealing with missing data and the use of sample weights within multilevel data structures. Supported by online data sets, the book's practical approach makes it an essential text for graduate-level courses on multilevel, longitudinal, latent variable modeling, multivariate statistics, or advanced quantitative techniques taught in departments of business, education, health, psychology, and sociology. The book will also prove appealing to researchers in these fields. The book is designed to provide an excellent supplement to Heck and Thomas's An Introduction to Multilevel Modeling Techniques, Fourth Edition; however, it can also be used with any multilevel or longitudinal modeling book or as a stand-alone text.
In social sciences the use of information and communication technologies (ICT) is an ever growing phenomenon. Emanating from the need of knowledge about society and economy, we are constantly striving to create ideas and methods for a better use of information. This study analyses different practices such as business process management, business process modelling or relationship marketing. It also discusses the use of ICT in a variety of examples taken from different fields such as education, web clipping, public safety, tactic knowledge, or protection of intellectual property and offers an outline of state-of-the-art applications of ICT in social sciences.
This 1999 book is about the kind of mathematics usually encountered in first year university courses. A key feature of the book is that this mathematics is explored in depth using the popular and powerful package MATLAB. The emphasis is on understanding and investigating the mathematics, and putting it into practice in a wide variety of modelling situations. In the process, the reader will gain some fluency with MATLAB, no starting knowledge of the package being assumed. The range of material is wide: matrices, whole numbers, complex numbers, geometry of curves and families of lines, data analysis, random numbers and simulations, and differential equations form the basic mathematics. This is applied to a large number of investigations and modelling problems, from sequences of real numbers to cafeteria queues, from card shuffling to models of fish growth. All extras to the standard MATLAB package are supplied on the World Wide Web.
The First Book to Explain How a User of R or MATLAB Can Benefit from the Other In today's increasingly interdisciplinary world, R and MATLAB (R) users from different backgrounds must often work together and share code. R and MATLAB (R) is designed for users who already know R or MATLAB and now need to learn the other platform. The book makes the transition from one platform to the other as quick and painless as possible. Enables R and MATLAB Users to Easily Collaborate and Share Code The author covers essential tasks, such as working with matrices and vectors, writing functions and other programming concepts, graphics, numerical computing, and file input/output. He highlights important differences between the two platforms and explores common mistakes that are easy to make when transitioning from one platform to the other.
The MATLAB (R) programming environment is often perceived as a platform suitable for prototyping and modeling but not for "serious" applications. One of the main complaints is that MATLAB is just too slow. Accelerating MATLAB Performance aims to correct this perception by describing multiple ways to greatly improve MATLAB program speed. Packed with thousands of helpful tips, it leaves no stone unturned, discussing every aspect of MATLAB. Ideal for novices and professionals alike, the book describes MATLAB performance in a scale and depth never before published. It takes a comprehensive approach to MATLAB performance, illustrating numerous ways to attain the desired speedup. The book covers MATLAB, CPU, and memory profiling and discusses various tradeoffs in performance tuning. It describes both the application of standard industry techniques in MATLAB, as well as methods that are specific to MATLAB such as using different data types or built-in functions. The book covers MATLAB vectorization, parallelization (implicit and explicit), optimization, memory management, chunking, and caching. It explains MATLAB's memory model and details how it can be leveraged. It describes the use of GPU, MEX, FPGA, and other forms of compiled code, as well as techniques for speeding up deployed applications. It details specific tips for MATLAB GUI, graphics, and I/O. It also reviews a wide variety of utilities, libraries, and toolboxes that can help to improve performance. Sufficient information is provided to allow readers to immediately apply the suggestions to their own MATLAB programs. Extensive references are also included to allow those who wish to expand the treatment of a particular topic to do so easily. Supported by an active website, and numerous code examples, the book will help readers rapidly attain significant reductions in development costs and program run times.
Multiple factor analysis (MFA) enables users to analyze tables of individuals and variables in which the variables are structured into quantitative, qualitative, or mixed groups. Written by the co-developer of this methodology, Multiple Factor Analysis by Example Using R brings together the theoretical and methodological aspects of MFA. It also includes examples of applications and details of how to implement MFA using an R package (FactoMineR). The first two chapters cover the basic factorial analysis methods of principal component analysis (PCA) and multiple correspondence analysis (MCA). The next chapter discusses factor analysis for mixed data (FAMD), a little-known method for simultaneously analyzing quantitative and qualitative variables without group distinction. Focusing on MFA, subsequent chapters examine the key points of MFA in the context of quantitative variables as well as qualitative and mixed data. The author also compares MFA and Procrustes analysis and presents a natural extension of MFA: hierarchical MFA (HMFA). The final chapter explores several elements of matrix calculation and metric spaces used in the book.
R is open source statistical computing software. Since the R core group was formed in 1997, R has been extended by a very large number of packages with extensive documentation along with examples freely available on the internet. It offers a large number of statistical and numerical methods and graphical tools and visualization of extraordinarily high quality. R was recently ranked in 14th place by the Transparent Language Popularity Index and 6th as a scripting language, after PHP, Python, and Perl. The book is designed so that it can be used right away by novices while appealing to experienced users as well. Each article begins with a data example that can be downloaded directly from the R website. Data analysis questions are articulated following the presentation of the data. The necessary R commands are spelled out and executed and the output is presented and discussed. Other examples of data sets with a different flavor and different set of commands but following the theme of the article are presented as well. Each chapter predents a hands-on-experience. R has superb graphical outlays and the book brings out the essentials in this arena. The end user can benefit immensely by applying the graphics to enhance research findings. The core statistical methodologies such as regression, survival analysis, and discrete data are all covered.
Experience learning made easy-and quickly teach yourself how to manage your projects with Project 2007. With Step By Step, you set the pace-building and practicing the skills you need, just when you need them! Build a project plan and fine-tune the details Schedule tasks, assign resources, and manage dependencies Monitor progress and costs-and keep your project on track Format Gantt charts and other views to communicate project data Begin exploring enterprise project management systems Your all-in-one learning experience includes: Files for building skills and practicing the book's lessons Fully searchable eBook Bonus guide to the Ribbon, the new Microsoft Office interface Quick course on project management in the Appendix Windows Vista Product Guide eReference-plus other resources on CD For customers who purchase an ebook version of this title, instructions for downloading the CD files can be found in the ebook.
These lecture notes provide a rapid, accessible introduction to Bayesian statistical methods. The course covers the fundamental philosophy and principles of Bayesian inference, including the reasoning behind the prior/likelihood model construction synonymous with Bayesian methods, through to advanced topics such as nonparametrics, Gaussian processes and latent factor models. These advanced modelling techniques can easily be applied using computer code samples written in Python and Stan which are integrated into the main text. Importantly, the reader will learn methods for assessing model fit, and to choose between rival modelling approaches.
This book is a timely and critical introduction for those interested in what data science is (and isn't), and how it should be applied. The language is conversational and the content is accessible for readers without a quantitative or computational background; but, at the same time, it is also a practical overview of the field for the more technical readers. The overarching goal is to demystify the field and teach the reader how to develop an analytical mindset instead of following recipes. The book takes the scientist's approach of focusing on asking the right question at every step as this is the single most important factor contributing to the success of a data science project. Upon finishing this book, the reader should be asking more questions than I have answered. This book is, therefore, a practising scientist's approach to explaining data science through questions and examples.
Learn How to Use Growth Curve Analysis with Your Time Course Data An increasingly prominent statistical tool in the behavioral sciences, multilevel regression offers a statistical framework for analyzing longitudinal or time course data. It also provides a way to quantify and analyze individual differences, such as developmental and neuropsychological, in the context of a model of the overall group effects. To harness the practical aspects of this useful tool, behavioral science researchers need a concise, accessible resource that explains how to implement these analysis methods. Growth Curve Analysis and Visualization Using R provides a practical, easy-to-understand guide to carrying out multilevel regression/growth curve analysis (GCA) of time course or longitudinal data in the behavioral sciences, particularly cognitive science, cognitive neuroscience, and psychology. With a minimum of statistical theory and technical jargon, the author focuses on the concrete issue of applying GCA to behavioral science data and individual differences. The book begins with discussing problems encountered when analyzing time course data, how to visualize time course data using the ggplot2 package, and how to format data for GCA and plotting. It then presents a conceptual overview of GCA and the core analysis syntax using the lme4 package and demonstrates how to plot model fits. The book describes how to deal with change over time that is not linear, how to structure random effects, how GCA and regression use categorical predictors, and how to conduct multiple simultaneous comparisons among different levels of a factor. It also compares the advantages and disadvantages of approaches to implementing logistic and quasi-logistic GCA and discusses how to use GCA to analyze individual differences as both fixed and random effects. The final chapter presents the code for all of the key examples along with samples demonstrating how to report GCA results. Throughout the book, R code illustrates how to implement the analyses and generate the graphs. Each chapter ends with exercises to test your understanding. The example datasets, code for solutions to the exercises, and supplemental code and examples are available on the author's website.
About this book * Gives the reader hands on example-base experience for simulating dynamical models in MATLAB (R)/Simulink (R) and animating them in VRML * More than 150 images describe each step in the model realizations helping readers to understand them visually * Diverse examples and profound problem treatment enable the reader to animate complex dynamical problems m-files, Simulink models, VRML files and jpegs available for download provide full solutions for the end-of-chapter problems Virtual Reality and Animation for MATLAB (R) and Simulink (R) Users demonstrates the simulation and animation of physical systems using the MATLAB (R) Virtual Reality Toolbox (virtual models are created in V-Realm Builder). The book is divided into two parts; the first addresses MATLAB (R) and the second Simulink (R). The presentation is problem-based with each chapter teaching the reader a group of essential principles in the context of a step-by-step solution to a particular issue. Examples of the systems covered include mass-spring-dampers, a crank-slider mechanism and a moving vehicle. The examples are given in ascending level of difficulty and contain MATLAB (R)/Simulink (R) codes deliberately simplified so that readers can focus on: * understanding how to link a 3-d virtual scene to MATLAB (R)/Simulink (R); and * manipulating the 3-d virtual scene in MATLAB (R)/Simulink (R). When studied in sequence, the chapters of this text form a coherent whole enabling the reader to gain a thorough expertise in virtual simulation and animation of dynamical models using MATLAB (R)/Simulink (R). Individual chapters stand on their own, however, so that readers interested in a particular system can concentrate on it easily. Problems are provided in each chapter to give practice in the techniques demonstrated and to extend the range of the systems studied, for example, into the control sphere. Solution code for these problems can be downloaded from insert URL. Whether modeling the dynamics of a simple pendulum, a robot arm or a moving car, animation of a dynamical model can enliven and encourage understanding of mechanical systems and thus contribute to control design. Virtual Reality and Animation for MATLAB (R) and Simulink (R) Users will be instructive and interesting to anyone, researcher or student, working with the dynamics of physical systems. Readers are assumed to have some familiarity with MATLAB (R).
Using the same accessible, hands-on approach as its best-selling predecessor, the Handbook of Univariate and Multivariate Data Analysis with IBM SPSS, Second Edition explains how to apply statistical tests to experimental findings, identify the assumptions underlying the tests, and interpret the findings. This second edition now covers more topics and has been updated with the SPSS statistical package for Windows. New to the Second Edition Three new chapters on multiple discriminant analysis, logistic regression, and canonical correlation New section on how to deal with missing data Coverage of tests of assumptions, such as linearity, outliers, normality, homogeneity of variance-covariance matrices, and multicollinearity Discussions of the calculation of Type I error and the procedure for testing statistical significance between two correlation coefficients obtained from two samples Expanded coverage of factor analysis, path analysis (test of the mediation hypothesis), and structural equation modeling Suitable for both newcomers and seasoned researchers in the social sciences, the handbook offers a clear guide to selecting the right statistical test, executing a wide range of univariate and multivariate statistical tests via the Windows and syntax methods, and interpreting the output results. The SPSS syntax files used for executing the statistical tests can be found in the appendix. Data sets employed in the examples are available on the book's CRC Press web page.
Second Edition SAS® PROGRAMMING FOR RESEARCHERS AND SOCIAL SCIENTISTS By PAUL E. SPECTOR, "Just what the novice SAS programmer needs, particularly those who have no real programming experience. For example, branching is one of the more difficult programming commands for students to implement and the author does an excellent job of explaining this topic clearly and at a basic level. A big plus is the Common Errors section since students will definitely encounter errors." ?Robert Pavur, Management Science, University of North Texas The book that won accolades from thousands has been completely revised! Taking a problem solving approach that focuses on common programming tasks that social scientists encounter in doing data analysis, Spector uses sample programs and examples from social science problems to show readers how to write orderly programs and avoid excessive and disorganized branching. He provides readers with a three-step approach (preplanning, writing the program, and debugging) and tips about helpful features and practices as well as how to avoid certain pitfalls. "Spector has done an excellent job in explaining a somewhat difficult topic in a clear and concise manner. I like the fact that screen captures are included. It allows students to better follow what is being described in the book in relation to what is on the screen." ?Philip Craiger, Computer Science, University of Nebraska, Omaha Updated to the latest SAS releases, the book has been thoroughly revised to provide readers with even more practical tips and advice. New features in this edition include: *New sections on debugging in each chapter that provide advice about common errors *End of chapter Debugging Exercises that offer readers the chance to practice spotting the errors in the sample programs *New section in Chapter 1 on how to use the interface, including how to work with three separate windows, where to write the program, executing the program, managing the program files, and using the F key *Five new appendices, including a Glossary of Programming Terms, A Summary of SAS Language Statements, A Summary of SAS PROCs, Information Sources for SAS PROCs, and Corrections for the Debugging Exercises *Plus, a link to Spector's online SAS course! Appropriate for readers with little or no knowledge of the SAS language, this book will enable readers to run each example, adapt the examples to real problems that the reader may have, and create a program. "A solid introduction to programming in SAS, with a good, brief explanation of how that process differs from the usual point-and-click of Windows-based software such as SPSS and a spreadsheet. Even uninformed students can use it as a guide to creating SAS datasets, manipulating them, and writing programs in the SAS language that will produce all manner of statistical results." ?James P. Whittenburg, History, College of William & Mary
"Bridges the gap between programming syntax and programming applications. In contrast to other books on SAS programming, this book combines a clear explanation of the SAS language with a problem-solving approach to writing a SAS program. It provides the novice programmer with a useful and meaningful model for solving the types of programming problems encountered by researchers and social scientists." ?John E. Cornell, Biostatistician, Audie L. Murphy Memorial Hospital
Microsoft Power BI is a data analytics and visualization tool powerful enough for the most demanding data scientists, but accessible enough for everyday use for anyone who needs to get more from data. The market has many books designed to train and equip professional data analysts to use Power BI, but few of them make this tool accessible to anyone who wants to get up to speed on their own. This streamlined intro to Power BI covers all the foundational aspects and features you need to go from "zero to hero" with data and visualizations. Whether you work with large, complex datasets or work in Microsoft Excel, author Jeremey Arnold shows you how to teach yourself Power BI and use it confidently as a regular data analysis and reporting tool. You'll learn how to: Import, manipulate, visualize, and investigate data in Power BI Approach solutions for both self-service and enterprise BI Use Power BI in your organization's business intelligence strategy Produce effective reports and dashboards Create environments for sharing reports and managing data access with your team Determine the right solution for using Power BI offerings based on size, security, and computational needs
Methods of Statistical Model Estimation examines the most important and popular methods used to estimate parameters for statistical models and provide informative model summary statistics. Designed for R users, the book is also ideal for anyone wanting to better understand the algorithms used for statistical model fitting. The text presents algorithms for the estimation of a variety of regression procedures using maximum likelihood estimation, iteratively reweighted least squares regression, the EM algorithm, and MCMC sampling. Fully developed, working R code is constructed for each method. The book starts with OLS regression and generalized linear models, building to two-parameter maximum likelihood models for both pooled and panel models. It then covers a random effects model estimated using the EM algorithm and concludes with a Bayesian Poisson model using Metropolis-Hastings sampling. The book's coverage is innovative in several ways. First, the authors use executable computer code to present and connect the theoretical content. Therefore, code is written for clarity of exposition rather than stability or speed of execution. Second, the book focuses on the performance of statistical estimation and downplays algebraic niceties. In both senses, this book is written for people who wish to fit statistical models and understand them. See Professor Hilbe discuss the book.
Mathematica by Example, Sixth Edition is an essential resource for the Mathematica user, providing step-by-step instructions on achieving results from this powerful software tool. The book fully accounts for the changes to functionality and visualization capabilities and accomodates the full array of new extensions in the types of data and problems that Mathematica can immediately handle, including cloud services and systems, geographic and geometric computation, dynamic visualization, interactive applications and other improvements. It is an ideal text for scientific students, researchers, and aspiring programmers seeking further understanding of Mathematica. Written by seasoned practitioners with a view to practical implementation and problem-solving, the book's pedagogy is delivered clearly and without jargon using representative biological, physical and engineering problems. Code is provided on an ancillary website to support the use of Mathematica across diverse applications and subject areas.
Get ahead of the curve--learn about big data on the blockchain Blockchain came to prominence as the disruptive technology that made cryptocurrencies work. Now, data pros are using blockchain technology for faster real-time analysis, better data security, and more accurate predictions. Blockchain Data Analytics For Dummies is your quick-start guide to harnessing the potential of blockchain. Inside this book, technologists, executives, and data managers will find information and inspiration to adopt blockchain as a big data tool. Blockchain expert Michael G. Solomon shares his insight on what the blockchain is and how this new tech is poised to disrupt data. Set your organization on the cutting edge of analytics, before your competitors get there! Learn how blockchain technologies work and how they can integrate with big data Discover the power and potential of blockchain analytics Establish data models and quickly mine for insights and results Create data visualizations from blockchain analysis Discover how blockchains are disrupting the data world with this exciting title in the trusted For Dummies line!
PAMIR (Parameterized Adaptive Multidimensional Integration Routines) is a suite of Fortran programs for multidimensional numerical integration over hypercubes, simplexes, and hyper-rectangles in general dimension p, intended for use by physicists, applied mathematicians, computer scientists, and engineers. The programs, which are available on the internet at www.pamir-integrate.com and are free for non-profit research use, are capable of following localized peaks and valleys of the integrand. Each program comes with a Message-Passing Interface (MPI) parallel version for cluster use as well as serial versions.The first chapter presents introductory material, similar to that on the PAMIR website, and the next is a "manual" giving much more detail on the use of the programs than is on the website. They are followed by many examples of performance benchmarks and comparisons with other programs, and a discussion of the computational integration aspects of PAMIR, in comparison with other methods in the literature. The final chapter provides details of the construction of the algorithms, while the Appendices give technical details and certain mathematical derivations.
PAMIR (Parameterized Adaptive Multidimensional Integration Routines) is a suite of Fortran programs for multidimensional numerical integration over hypercubes, simplexes, and hyper-rectangles in general dimension p, intended for use by physicists, applied mathematicians, computer scientists, and engineers. The programs, which are available on the internet at www.pamir-integrate.com and are free for non-profit research use, are capable of following localized peaks and valleys of the integrand. Each program comes with a Message-Passing Interface (MPI) parallel version for cluster use as well as serial versions.The first chapter presents introductory material, similar to that on the PAMIR website, and the next is a "manual" giving much more detail on the use of the programs than is on the website. They are followed by many examples of performance benchmarks and comparisons with other programs, and a discussion of the computational integration aspects of PAMIR, in comparison with other methods in the literature. The final chapter provides details of the construction of the algorithms, while the Appendices give technical details and certain mathematical derivations.
This work addresses the notion of compression ratios greater than what has been known for random sequential strings in binary and larger radix-based systems as applied to those traditionally found in Kolmogorov complexity. A culmination of the author's decade-long research that began with his discovery of a compressible random sequential string, the book maintains a theoretical-statistical level of introduction suitable for mathematical physicists. It discusses the application of ternary-, quaternary-, and quinary-based systems in statistical communication theory, computing, and physics.
Basic Statistics provides an accessible and comprehensive introduction to statistics using the free, state-of-the-art, powerful software program R. This book is designed to both introduce students to key concepts in statistics and to provide simple instructions for using R. This concise book: *Teaches essential concepts in statistics, assuming little background knowledge on the part of the reader *Introduces students to R with as few sub-commands as possible for ease of use *Provides practical examples from the educational, behavioral, and social sciences With clear explanations of statistical processes and step-by-step commands in R, Basic Statistics will appeal to students and professionals across the social and behavioral sciences. |
![]() ![]() You may like...
Mathematical Modeling for Smart…
Debabrata Samanta, Debabrata Singh
Hardcover
R12,704
Discovery Miles 127 040
Synthesis and Operability Strategies for…
Efstratios N. Pistikopoulos, Yuhe Tian
Paperback
R3,857
Discovery Miles 38 570
Data Communication and Computer Networks…
Jill West, Curt M. White
Paperback
Database Systems - Design…
Carlos Coronel, Steven Morris
Paperback
|