![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Computer software packages > Other software packages
With the development of the Internet from a research network to a commercial and integrated network which must satisfy heterogeneous user demand, prices for Internet usage play an important role. This study analyzes the pricing of Internet transport services and interconnection. It explains why appropriate pricing requires popular flat rates to be abandoned. They should be replaced by usage-based prices which are load-sensitive and take different service qualities into consideration. The aim of this work is to give an overview of Internet pricing proposals, to classify, investigate, and evaluate these pricing schemes as well as to elaborate on relations between them. Evaluations are based on normative criteria for Internet pricing from the point of view of social welfare and the perspectives of both Internet service providers and users. Moreover, this book shows what efficient settlement rules look like at the interconnection level. Since these interconnection pricing agreements are closely related to retail pricing models the compatibility between them is also analyzed.
The International Federation for Information Processing, IFIP, is a multinational federation of professional technical organisations concerned with information processing. IFIP is dedicated to improving communication and increased understanding among practitioners of all nations about the role information processing can play in all walks of life. This Working Conference, Secondary School Mathematics in the World of Communication Technologies: Learning, Teaching and the Curriculum, was organised by Working Group 3.1, Informatics in Secondary Education, ofiFIP Technical Committee for Education, TC3. This is the third conference on this theme organised by WG 3.1, the previous two were held in Varna, Bulgaria, 1977, and Sofia, Bulgaria, 1987-proceedings published by North-Holland Elsevier. The aim of the conference was to take a forward look at the issue of the relationships between mathematics and the new technologies of information and communication in the context of the increased availability of interactive and dynamic information processing tools. The main focus was on the mathematics education of students in the age range of about ll to 18 years and the following themes were addressed: * Curriculum: curriculum evolution; relationships with informatics; * Teachers: professional development; methodology and practice; * Learners: tools and techniques; concept development; research and theory; * Human and social issues: culture and policy; personal impact.
The fun and easy way to learn to use this leading business intelligence tool Written by an author team who is directly involved with SAS, this easy-to-follow guide is fully updated for the latest release of SAS and covers just what you need to put this popular software to work in your business. SAS allows any business or enterprise to improve data delivery, analysis, reporting, movement across a company, data mining, forecasting, statistical analysis, and more. "SAS For Dummies, 2nd Edition " gives you the necessary background on what SAS can do for you and explains how to use the Enterprise Guide.SAS provides statistical and data analysis tools to help you deal with all kinds of data: operational, financial, performance, and morePlaces special emphasis on Enterprise Guide and other analytical tools, covering all commonly used featuresCovers all commonly used features and shows you the practical applications you can put to work in your businessExplores how to get various types of data into the software and how to work with databasesCovers producing reports and Web reporting tools, analytics, macros, and working with your data In the easy-to-follow, no-nonsense "For" "Dummies" format, "SAS
For Dummies" gives you the knowledge and the confidence to get SAS
working for your organization. Note: CD-ROM/DVD and other supplementary materials are not included as part of eBook file.
A Guide to Doing Statistics in Second Language Research Using SPSS and R, Second Edition is the only text available that demonstrates how to use SPSS and R as specifically related to applied linguistics and SLA research. This new edition is up-to-date with the most recent version of the SPSS software and now also includes coverage of R, a software program increasingly used by researchers in this field. Supported by a number of pedagogical features, including tip boxes and practice activities, and a wealth of screenshots, this book takes readers through each step of performing and understanding statistical research, covering the most commonly used tests in second language research, including t-tests, correlation, and ANOVA. A robust accompanying website covers additional tests of interest to students and researchers, taking them step-by-step through carrying out these tests themselves. In this comprehensive and hands-on volume, Jenifer Larson-Hall equips readers with a thorough understanding and the practical skills necessary to conducting and interpreting statisical research effectively using SPSS and R, ideal for graduate students and researchers in SLA, social sciences, and applied lingustics. For more information and materials, please visit www.routledge.com/cw/larson-hall.
If you want to learn to use R for data analysis but aren't sure how to get started, this practical book will help you find the right path through your data. Drawing on real-world data to show you how to use different techniques in practice, it helps you progress your programming and statistics knowledge so you can apply the most appropriate tools in your research. It starts with descriptive statistics and moves through regression to advanced techniques such as structural equation modelling and Bayesian statistics, all with digestible mathematical detail for beginner researchers. The book: Shows you how to use R packages and apply functions, adjusting them to suit different datasets. Gives you the tools to try new statistical techniques and empowers you to become confident using them. Encourages you to learn by doing when running and adapting the authors' own code. Equips you with solutions to overcome the potential challenges of working with real data that may be messy or imperfect. Accompanied by online resources including screencast tutorials of R that give you step by step guidance and R scripts and datasets for you to practice with, this book is a perfect companion for any student of applied statistics or quantitative research methods courses.
Multilevel and Longitudinal Modeling with IBM SPSS, Third Edition, demonstrates how to use the multilevel and longitudinal modeling techniques available in IBM SPSS Versions 25-27. Annotated screenshots with all relevant output provide readers with a step-by-step understanding of each technique as they are shown how to navigate the program. Throughout, diagnostic tools, data management issues, and related graphics are introduced. SPSS commands show the flow of the menu structure and how to facilitate model building, while annotated syntax is also available for those who prefer this approach. Extended examples illustrating the logic of model development and evaluation are included throughout the book, demonstrating the context and rationale of the research questions and the steps around which the analyses are structured. The book opens with the conceptual and methodological issues associated with multilevel and longitudinal modeling, followed by a discussion of SPSS data management techniques that facilitate working with multilevel, longitudinal, or cross-classified data sets. The next few chapters introduce the basics of multilevel modeling, developing a multilevel model, extensions of the basic two-level model (e.g., three-level models, models for binary and ordinal outcomes), and troubleshooting techniques for everyday-use programming and modeling problems along with potential solutions. Models for investigating individual and organizational change are next developed, followed by models with multivariate outcomes and, finally, models with cross-classified and multiple membership data structures. The book concludes with thoughts about ways to expand on the various multilevel and longitudinal modeling techniques introduced and issues (e.g., missing data, sample weights) to keep in mind in conducting multilevel analyses. Key features of the third edition: Thoroughly updated throughout to reflect IBM SPSS Versions 26-27. Introduction to fixed-effects regression for examining change over time where random-effects modeling may not be an optimal choice. Additional treatment of key topics specifically aligned with multilevel modeling (e.g., models with binary and ordinal outcomes). Expanded coverage of models with cross-classified and multiple membership data structures. Added discussion on model checking for improvement (e.g., examining residuals, locating outliers). Further discussion of alternatives for dealing with missing data and the use of sample weights within multilevel data structures. Supported by online data sets, the book's practical approach makes it an essential text for graduate-level courses on multilevel, longitudinal, latent variable modeling, multivariate statistics, or advanced quantitative techniques taught in departments of business, education, health, psychology, and sociology. The book will also prove appealing to researchers in these fields. The book is designed to provide an excellent supplement to Heck and Thomas's An Introduction to Multilevel Modeling Techniques, Fourth Edition; however, it can also be used with any multilevel or longitudinal modeling book or as a stand-alone text.
Quickly and Easily Write Dynamic Documents Suitable for both beginners and advanced users, Dynamic Documents with R and knitr, Second Edition makes writing statistical reports easier by integrating computing directly with reporting. Reports range from homework, projects, exams, books, blogs, and web pages to virtually any documents related to statistical graphics, computing, and data analysis. The book covers basic applications for beginners while guiding power users in understanding the extensibility of the knitr package. New to the Second Edition A new chapter that introduces R Markdown v2 Changes that reflect improvements in the knitr package New sections on generating tables, defining custom printing methods for objects in code chunks, the C/Fortran engines, the Stan engine, running engines in a persistent session, and starting a local server to serve dynamic documents Boost Your Productivity in Statistical Report Writing and Make Your Scientific Computing with R Reproducible Like its highly praised predecessor, this edition shows you how to improve your efficiency in writing reports. The book takes you from program output to publication-quality reports, helping you fine-tune every aspect of your report.
The First Book to Explain How a User of R or MATLAB Can Benefit from the Other In today's increasingly interdisciplinary world, R and MATLAB (R) users from different backgrounds must often work together and share code. R and MATLAB (R) is designed for users who already know R or MATLAB and now need to learn the other platform. The book makes the transition from one platform to the other as quick and painless as possible. Enables R and MATLAB Users to Easily Collaborate and Share Code The author covers essential tasks, such as working with matrices and vectors, writing functions and other programming concepts, graphics, numerical computing, and file input/output. He highlights important differences between the two platforms and explores common mistakes that are easy to make when transitioning from one platform to the other.
If you want to learn to use R for data analysis but aren't sure how to get started, this practical book will help you find the right path through your data. Drawing on real-world data to show you how to use different techniques in practice, it helps you progress your programming and statistics knowledge so you can apply the most appropriate tools in your research. It starts with descriptive statistics and moves through regression to advanced techniques such as structural equation modelling and Bayesian statistics, all with digestible mathematical detail for beginner researchers. The book: Shows you how to use R packages and apply functions, adjusting them to suit different datasets. Gives you the tools to try new statistical techniques and empowers you to become confident using them. Encourages you to learn by doing when running and adapting the authors' own code. Equips you with solutions to overcome the potential challenges of working with real data that may be messy or imperfect. Accompanied by online resources including screencast tutorials of R that give you step by step guidance and R scripts and datasets for you to practice with, this book is a perfect companion for any student of applied statistics or quantitative research methods courses.
Multiple factor analysis (MFA) enables users to analyze tables of individuals and variables in which the variables are structured into quantitative, qualitative, or mixed groups. Written by the co-developer of this methodology, Multiple Factor Analysis by Example Using R brings together the theoretical and methodological aspects of MFA. It also includes examples of applications and details of how to implement MFA using an R package (FactoMineR). The first two chapters cover the basic factorial analysis methods of principal component analysis (PCA) and multiple correspondence analysis (MCA). The next chapter discusses factor analysis for mixed data (FAMD), a little-known method for simultaneously analyzing quantitative and qualitative variables without group distinction. Focusing on MFA, subsequent chapters examine the key points of MFA in the context of quantitative variables as well as qualitative and mixed data. The author also compares MFA and Procrustes analysis and presents a natural extension of MFA: hierarchical MFA (HMFA). The final chapter explores several elements of matrix calculation and metric spaces used in the book.
R is open source statistical computing software. Since the R core group was formed in 1997, R has been extended by a very large number of packages with extensive documentation along with examples freely available on the internet. It offers a large number of statistical and numerical methods and graphical tools and visualization of extraordinarily high quality. R was recently ranked in 14th place by the Transparent Language Popularity Index and 6th as a scripting language, after PHP, Python, and Perl. The book is designed so that it can be used right away by novices while appealing to experienced users as well. Each article begins with a data example that can be downloaded directly from the R website. Data analysis questions are articulated following the presentation of the data. The necessary R commands are spelled out and executed and the output is presented and discussed. Other examples of data sets with a different flavor and different set of commands but following the theme of the article are presented as well. Each chapter predents a hands-on-experience. R has superb graphical outlays and the book brings out the essentials in this arena. The end user can benefit immensely by applying the graphics to enhance research findings. The core statistical methodologies such as regression, survival analysis, and discrete data are all covered.
Accessible to a general audience with some background in statistics and computing Many examples and extended case studies Illustrations using R and Rstudio A true blend of statistics and computer science -- not just a grab bag of topics from each
Experience learning made easy-and quickly teach yourself how to manage your projects with Project 2007. With Step By Step, you set the pace-building and practicing the skills you need, just when you need them! Build a project plan and fine-tune the details Schedule tasks, assign resources, and manage dependencies Monitor progress and costs-and keep your project on track Format Gantt charts and other views to communicate project data Begin exploring enterprise project management systems Your all-in-one learning experience includes: Files for building skills and practicing the book's lessons Fully searchable eBook Bonus guide to the Ribbon, the new Microsoft Office interface Quick course on project management in the Appendix Windows Vista Product Guide eReference-plus other resources on CD For customers who purchase an ebook version of this title, instructions for downloading the CD files can be found in the ebook.
The MATLAB (R) programming environment is often perceived as a platform suitable for prototyping and modeling but not for "serious" applications. One of the main complaints is that MATLAB is just too slow. Accelerating MATLAB Performance aims to correct this perception by describing multiple ways to greatly improve MATLAB program speed. Packed with thousands of helpful tips, it leaves no stone unturned, discussing every aspect of MATLAB. Ideal for novices and professionals alike, the book describes MATLAB performance in a scale and depth never before published. It takes a comprehensive approach to MATLAB performance, illustrating numerous ways to attain the desired speedup. The book covers MATLAB, CPU, and memory profiling and discusses various tradeoffs in performance tuning. It describes both the application of standard industry techniques in MATLAB, as well as methods that are specific to MATLAB such as using different data types or built-in functions. The book covers MATLAB vectorization, parallelization (implicit and explicit), optimization, memory management, chunking, and caching. It explains MATLAB's memory model and details how it can be leveraged. It describes the use of GPU, MEX, FPGA, and other forms of compiled code, as well as techniques for speeding up deployed applications. It details specific tips for MATLAB GUI, graphics, and I/O. It also reviews a wide variety of utilities, libraries, and toolboxes that can help to improve performance. Sufficient information is provided to allow readers to immediately apply the suggestions to their own MATLAB programs. Extensive references are also included to allow those who wish to expand the treatment of a particular topic to do so easily. Supported by an active website, and numerous code examples, the book will help readers rapidly attain significant reductions in development costs and program run times.
Microsoft Windows 8.1 and Windows Server 2012 R2 are designed to be the best performing operating systems to date, but even the best systems can be overwhelmed with load and/or plagued with poorly performing code. Windows Performance Analysis Field Guide gives you a practical field guide approach to performance monitoring and analysis from experts who do this work every day. Think of this book as your own guide to "What would Microsoft support do?" when you have a Windows performance issue. Author Clint Huffman, a Microsoft veteran of over fifteen years, shows you how to identify and alleviate problems with the computer resources of disk, memory, processor, and network. You will learn to use performance counters as the initial indicators, then use various tools to "dig in" to the problem, as well as how to capture and analyze boot performance problems.
These lecture notes provide a rapid, accessible introduction to Bayesian statistical methods. The course covers the fundamental philosophy and principles of Bayesian inference, including the reasoning behind the prior/likelihood model construction synonymous with Bayesian methods, through to advanced topics such as nonparametrics, Gaussian processes and latent factor models. These advanced modelling techniques can easily be applied using computer code samples written in Python and Stan which are integrated into the main text. Importantly, the reader will learn methods for assessing model fit, and to choose between rival modelling approaches.
Discover how SAP S/4HANA transforms your supply chain! Explore functionalities for sourcing and procurement, production execution, plant maintenance, sales order management, transportation management, warehouse management, and more. See how intelligent technologies elevate your logistics operations with SAP Business Technology Platform and learn about complementary cloud solutions like SAP Ariba and SAP IBP. This is your starting point for logistics with SAP S/4HANA!In this book, you'll learn about: a. Key Functionality See what SAP S/4HANA 2021 has to offer! Walk through your logistics business processes, from production planning to inventory valuation and beyond. Learn about new features such as predictive MRP, centralized procurement, and production engineering and operations. b. Logistics Innovations Your supply chain is getting smarter. Discover intelligent technologies enabled by SAP BTP: blockchain, intelligent robotic process automation, machine learning, and more. c. Planning Your Migration Prepare for your logistics transformation. Plan your roadmap to SAP S/4HANA, evaluate your implementation approaches, and get insight into the new RISE with SAP offering. Highlights include: 1) Planning and scheduling 2) Sourcing and procurement 3) Manufacturing operations 4) Quality management 5) Plant maintenance 6) Sales order management 7) Transportation management 8) Inventory management 9) Warehouse management 10) Intelligent technologies 11) Reporting and analytics 12) Industry use cases
About this book * Gives the reader hands on example-base experience for simulating dynamical models in MATLAB (R)/Simulink (R) and animating them in VRML * More than 150 images describe each step in the model realizations helping readers to understand them visually * Diverse examples and profound problem treatment enable the reader to animate complex dynamical problems m-files, Simulink models, VRML files and jpegs available for download provide full solutions for the end-of-chapter problems Virtual Reality and Animation for MATLAB (R) and Simulink (R) Users demonstrates the simulation and animation of physical systems using the MATLAB (R) Virtual Reality Toolbox (virtual models are created in V-Realm Builder). The book is divided into two parts; the first addresses MATLAB (R) and the second Simulink (R). The presentation is problem-based with each chapter teaching the reader a group of essential principles in the context of a step-by-step solution to a particular issue. Examples of the systems covered include mass-spring-dampers, a crank-slider mechanism and a moving vehicle. The examples are given in ascending level of difficulty and contain MATLAB (R)/Simulink (R) codes deliberately simplified so that readers can focus on: * understanding how to link a 3-d virtual scene to MATLAB (R)/Simulink (R); and * manipulating the 3-d virtual scene in MATLAB (R)/Simulink (R). When studied in sequence, the chapters of this text form a coherent whole enabling the reader to gain a thorough expertise in virtual simulation and animation of dynamical models using MATLAB (R)/Simulink (R). Individual chapters stand on their own, however, so that readers interested in a particular system can concentrate on it easily. Problems are provided in each chapter to give practice in the techniques demonstrated and to extend the range of the systems studied, for example, into the control sphere. Solution code for these problems can be downloaded from insert URL. Whether modeling the dynamics of a simple pendulum, a robot arm or a moving car, animation of a dynamical model can enliven and encourage understanding of mechanical systems and thus contribute to control design. Virtual Reality and Animation for MATLAB (R) and Simulink (R) Users will be instructive and interesting to anyone, researcher or student, working with the dynamics of physical systems. Readers are assumed to have some familiarity with MATLAB (R).
Learn How to Use Growth Curve Analysis with Your Time Course Data An increasingly prominent statistical tool in the behavioral sciences, multilevel regression offers a statistical framework for analyzing longitudinal or time course data. It also provides a way to quantify and analyze individual differences, such as developmental and neuropsychological, in the context of a model of the overall group effects. To harness the practical aspects of this useful tool, behavioral science researchers need a concise, accessible resource that explains how to implement these analysis methods. Growth Curve Analysis and Visualization Using R provides a practical, easy-to-understand guide to carrying out multilevel regression/growth curve analysis (GCA) of time course or longitudinal data in the behavioral sciences, particularly cognitive science, cognitive neuroscience, and psychology. With a minimum of statistical theory and technical jargon, the author focuses on the concrete issue of applying GCA to behavioral science data and individual differences. The book begins with discussing problems encountered when analyzing time course data, how to visualize time course data using the ggplot2 package, and how to format data for GCA and plotting. It then presents a conceptual overview of GCA and the core analysis syntax using the lme4 package and demonstrates how to plot model fits. The book describes how to deal with change over time that is not linear, how to structure random effects, how GCA and regression use categorical predictors, and how to conduct multiple simultaneous comparisons among different levels of a factor. It also compares the advantages and disadvantages of approaches to implementing logistic and quasi-logistic GCA and discusses how to use GCA to analyze individual differences as both fixed and random effects. The final chapter presents the code for all of the key examples along with samples demonstrating how to report GCA results. Throughout the book, R code illustrates how to implement the analyses and generate the graphs. Each chapter ends with exercises to test your understanding. The example datasets, code for solutions to the exercises, and supplemental code and examples are available on the author's website.
A start-to-finish guide to one of the most useful programming languages for researchers in a variety of fields In the newly revised Third Edition of The R Book, a team of distinguished teachers and researchers delivers a user-friendly and comprehensive discussion of foundational and advanced topics in the R software language, which is used widely in science, engineering, medicine, economics, and other fields. The book is designed to be used as both a complete text--readable from cover to cover--and as a reference manual for practitioners seeking authoritative guidance on particular topics. This latest edition offers instruction on the use of the RStudio GUI, an easy-to-use environment for those new to R. It provides readers with a complete walkthrough of the R language, beginning at a point that assumes no prior knowledge of R and very little previous knowledge of statistics. Readers will also find: A thorough introduction to fundamental concepts in statistics and step-by-step roadmaps to their implementation in R; Comprehensive explorations of worked examples in R; A complementary companion website with downloadable datasets that are used in the book; In-depth examination of essential R packages. Perfect for undergraduate and postgraduate students of science, engineering, medicine economics, and geography, The R Book will also earn a place in the libraries of social sciences professionals.
Data Analytics for the Social Sciences is an introductory, graduate-level treatment of data analytics for social science. It features applications in the R language, arguably the fastest growing and leading statistical tool for researchers. The book starts with an ethics chapter on the uses and potential abuses of data analytics. Chapters 2 and 3 show how to implement a broad range of statistical procedures in R. Chapters 4 and 5 deal with regression and classification trees and with random forests. Chapter 6 deals with machine learning models and the "caret" package, which makes available to the researcher hundreds of models. Chapter 7 deals with neural network analysis, and Chapter 8 deals with network analysis and visualization of network data. A final chapter treats text analysis, including web scraping, comparative word frequency tables, word clouds, word maps, sentiment analysis, topic analysis, and more. All empirical chapters have two "Quick Start" exercises designed to allow quick immersion in chapter topics, followed by "In Depth" coverage. Data are available for all examples and runnable R code is provided in a "Command Summary". An appendix provides an extended tutorial on R and RStudio. Almost 30 online supplements provide information for the complete book, "books within the book" on a variety of topics, such as agent-based modeling. Rather than focusing on equations, derivations, and proofs, this book emphasizes hands-on obtaining of output for various social science models and how to interpret the output. It is suitable for all advanced level undergraduate and graduate students learning statistical data analysis.
Modelling Survival Data in Medical Research, Fourth Edition describes the analysis of survival data, illustrated using a wide range of examples from biomedical research. Written in a non-technical style, it concentrates on how the techniques are used in practice. Starting with standard methods for summarising survival data, Cox regression and parametric modelling, the book covers many more advanced techniques, including interval-censoring, frailty modelling, competing risks, analysis of multiple events, and dependent censoring. This new edition contains chapters on Bayesian survival analysis and use of the R software. Earlier chapters have been extensively revised and expanded to add new material on several topics. These include methods for assessing the predictive ability of a model, joint models for longitudinal and survival data, and modern methods for the analysis of interval-censored survival data. Features: Presents an accessible account of a wide range of statistical methods for analysing survival data Contains practical guidance on modelling survival data from the author's many years of experience in teaching and consultancy Shows how Bayesian methods can be used to analyse survival data Includes details on how R can be used to carry out all the methods described, with guidance on the interpretation of the resulting output Contains many real data examples and additional data sets that can be used for coursework All data sets used are available in electronic format from the publisher's website Modelling Survival Data in Medical Research, Fourth Edition is an invaluable resource for statisticians in the pharmaceutical industry and biomedical research centres, research scientists and clinicians who are analysing their own data, and students following undergraduate or postgraduate courses in survival analysis.
Second Edition SAS® PROGRAMMING FOR RESEARCHERS AND SOCIAL SCIENTISTS By PAUL E. SPECTOR, "Just what the novice SAS programmer needs, particularly those who have no real programming experience. For example, branching is one of the more difficult programming commands for students to implement and the author does an excellent job of explaining this topic clearly and at a basic level. A big plus is the Common Errors section since students will definitely encounter errors." ?Robert Pavur, Management Science, University of North Texas The book that won accolades from thousands has been completely revised! Taking a problem solving approach that focuses on common programming tasks that social scientists encounter in doing data analysis, Spector uses sample programs and examples from social science problems to show readers how to write orderly programs and avoid excessive and disorganized branching. He provides readers with a three-step approach (preplanning, writing the program, and debugging) and tips about helpful features and practices as well as how to avoid certain pitfalls. "Spector has done an excellent job in explaining a somewhat difficult topic in a clear and concise manner. I like the fact that screen captures are included. It allows students to better follow what is being described in the book in relation to what is on the screen." ?Philip Craiger, Computer Science, University of Nebraska, Omaha Updated to the latest SAS releases, the book has been thoroughly revised to provide readers with even more practical tips and advice. New features in this edition include: *New sections on debugging in each chapter that provide advice about common errors *End of chapter Debugging Exercises that offer readers the chance to practice spotting the errors in the sample programs *New section in Chapter 1 on how to use the interface, including how to work with three separate windows, where to write the program, executing the program, managing the program files, and using the F key *Five new appendices, including a Glossary of Programming Terms, A Summary of SAS Language Statements, A Summary of SAS PROCs, Information Sources for SAS PROCs, and Corrections for the Debugging Exercises *Plus, a link to Spector's online SAS course! Appropriate for readers with little or no knowledge of the SAS language, this book will enable readers to run each example, adapt the examples to real problems that the reader may have, and create a program. "A solid introduction to programming in SAS, with a good, brief explanation of how that process differs from the usual point-and-click of Windows-based software such as SPSS and a spreadsheet. Even uninformed students can use it as a guide to creating SAS datasets, manipulating them, and writing programs in the SAS language that will produce all manner of statistical results." ?James P. Whittenburg, History, College of William & Mary
"Bridges the gap between programming syntax and programming applications. In contrast to other books on SAS programming, this book combines a clear explanation of the SAS language with a problem-solving approach to writing a SAS program. It provides the novice programmer with a useful and meaningful model for solving the types of programming problems encountered by researchers and social scientists." ?John E. Cornell, Biostatistician, Audie L. Murphy Memorial Hospital
Using the same accessible, hands-on approach as its best-selling predecessor, the Handbook of Univariate and Multivariate Data Analysis with IBM SPSS, Second Edition explains how to apply statistical tests to experimental findings, identify the assumptions underlying the tests, and interpret the findings. This second edition now covers more topics and has been updated with the SPSS statistical package for Windows. New to the Second Edition Three new chapters on multiple discriminant analysis, logistic regression, and canonical correlation New section on how to deal with missing data Coverage of tests of assumptions, such as linearity, outliers, normality, homogeneity of variance-covariance matrices, and multicollinearity Discussions of the calculation of Type I error and the procedure for testing statistical significance between two correlation coefficients obtained from two samples Expanded coverage of factor analysis, path analysis (test of the mediation hypothesis), and structural equation modeling Suitable for both newcomers and seasoned researchers in the social sciences, the handbook offers a clear guide to selecting the right statistical test, executing a wide range of univariate and multivariate statistical tests via the Windows and syntax methods, and interpreting the output results. The SPSS syntax files used for executing the statistical tests can be found in the appendix. Data sets employed in the examples are available on the book's CRC Press web page.
For courses in Graduate MIS, Decision Support Systems, and courses covering the principles of enterprise resource planning systems. This text takes a generic approach to enterprise resource planning systems and their interrelationships, covering all functional areas of this new type of management challenge. It discusses the re-design of business processes, changes in organizational structure, and effective management strategies that will help assure competitiveness, responsiveness, productivity, and global impact for many organizations in the years ahead. |
![]() ![]() You may like...
Revealing Revelation - How God's Plans…
Amir Tsarfati, Rick Yohn
Paperback
![]()
Ranked Set Sampling - 65 Years Improving…
Carlos N. Bouza-Herrera, Amer Ibrahim Falah Al-Omari
Paperback
|