![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Computer software packages > Other software packages
Economists are regularly confronted with results of quantitative economics research. Econometrics: Theory and Applications with EViews provides a broad introduction to quantitative economic methods, for example how models arise, their underlying assumptions and how estimates of parameters or other economic quantities are computed. The author combines econometric theory with practice by demonstrating its use with the software package EViews through extensive use of screen shots. The emphasis is on understanding how to select the right method of analysis for a given situation, and how to actually apply the theoretical methodology correctly. The EViews software package is available from 'Quantitive Micro Software'. Written for any undergraduate or postgraduate course in Econometrics.
Modelling Survival Data in Medical Research, Fourth Edition describes the analysis of survival data, illustrated using a wide range of examples from biomedical research. Written in a non-technical style, it concentrates on how the techniques are used in practice. Starting with standard methods for summarising survival data, Cox regression and parametric modelling, the book covers many more advanced techniques, including interval-censoring, frailty modelling, competing risks, analysis of multiple events, and dependent censoring. This new edition contains chapters on Bayesian survival analysis and use of the R software. Earlier chapters have been extensively revised and expanded to add new material on several topics. These include methods for assessing the predictive ability of a model, joint models for longitudinal and survival data, and modern methods for the analysis of interval-censored survival data. Features: Presents an accessible account of a wide range of statistical methods for analysing survival data Contains practical guidance on modelling survival data from the author's many years of experience in teaching and consultancy Shows how Bayesian methods can be used to analyse survival data Includes details on how R can be used to carry out all the methods described, with guidance on the interpretation of the resulting output Contains many real data examples and additional data sets that can be used for coursework All data sets used are available in electronic format from the publisher's website Modelling Survival Data in Medical Research, Fourth Edition is an invaluable resource for statisticians in the pharmaceutical industry and biomedical research centres, research scientists and clinicians who are analysing their own data, and students following undergraduate or postgraduate courses in survival analysis.
This Brief provides a roadmap for the R language and programming environment with signposts to further resources and documentation.
Conquer the complexities of this open source statistical language R is fast becoming the de facto standard for statistical computing and analysis in science, business, engineering, and related fields. This book examines this complex language using simple statistical examples, showing how R operates in a user-friendly context. Both students and workers in fields that require extensive statistical analysis will find this book helpful as they learn to use R for simple summary statistics, hypothesis testing, creating graphs, regression, and much more. It covers formula notation, complex statistics, manipulating data and extracting components, and rudimentary programming.R, the open source statistical language increasingly used to handle statistics and produces publication-quality graphs, is notoriously complex This book makes R easier to understand through the use of simple statistical examples, teaching the necessary elements in the context in which R is actually usedCovers getting started with R and using it for simple summary statistics, hypothesis testing, and graphsShows how to use R for formula notation, complex statistics, manipulating data, extracting components, and regressionProvides beginning programming instruction for those who want to write their own scripts "Beginning R" offers anyone who needs to perform statistical analysis the information necessary to use R with confidence.
"Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis, Second Edition, "provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. This new edition contains six new sections, in addition to fully-updated examples, tables, figures, and a revised appendix. Intended primarily for practitioners, this book does not require sophisticated mathematical skills or deep understanding of the underlying theory and methods nor does it discuss alternative technologies for reasoning under uncertainty. The theory and methods presented are illustrated through more than 140 examples, and exercises are included for the reader to check his or her level of understanding. The techniques and methods presented for knowledge elicitation, model construction and verification, modeling techniques and tricks, learning models from data, and analyses of models have all been developed and refined on the basis of numerous courses that the authors have held for practitioners worldwide. "
A start-to-finish guide to one of the most useful programming languages for researchers in a variety of fields In the newly revised Third Edition of The R Book, a team of distinguished teachers and researchers delivers a user-friendly and comprehensive discussion of foundational and advanced topics in the R software language, which is used widely in science, engineering, medicine, economics, and other fields. The book is designed to be used as both a complete text--readable from cover to cover--and as a reference manual for practitioners seeking authoritative guidance on particular topics. This latest edition offers instruction on the use of the RStudio GUI, an easy-to-use environment for those new to R. It provides readers with a complete walkthrough of the R language, beginning at a point that assumes no prior knowledge of R and very little previous knowledge of statistics. Readers will also find: A thorough introduction to fundamental concepts in statistics and step-by-step roadmaps to their implementation in R; Comprehensive explorations of worked examples in R; A complementary companion website with downloadable datasets that are used in the book; In-depth examination of essential R packages. Perfect for undergraduate and postgraduate students of science, engineering, medicine economics, and geography, The R Book will also earn a place in the libraries of social sciences professionals.
Written specifically for those with no prior programming experience and minimal quantitative training, this accessible text walks behavioral science students and researchers through the process of programming using MATLAB. The book explores examples, terms, and programming needs relevant to those in the behavioral sciences and helps readers perform virtually any computational function in solving their research problems. Principles are illustrated with usable code. Each chapter opens with a list of objectives followed by new commands required to accomplish those goals. These objectives also serve as a reference to help readers easily relocate a section of interest. Sample code and output and chapter problems demonstrate how to write a program and explore a model so readers can see the results obtained using different equations and values. A web site provides solutions to selected problems and the book's program code output and examples so readers can manipulate them as needed. The outputs on the website have color, motion, and sound. Highlights of the new edition include: *Updated to reflect changes in the most recent version of MATLAB, including special tricks and new functions. *More information on debugging and common errors and more basic problems in the rudiments of MATLAB to help novice users get up and running more quickly. *A new chapter on Psychtoolbox, a suite of programs specifically geared to behavioral science research. *A new chapter on Graphical User Interfaces (GUIs) for user-friendly communication. *Increased emphasis on pre-allocation of memory, recursion, handles, and matrix algebra operators. The book opens with an overview of what is to come and tips on how to write clear programs followed by pointers for interacting with MATLAB, including its commands and how to read error messages. The matrices chapter reviews how to store and access data. Chapter 4 examines how to carry out calculations followed by a review of how to perform various actions depending on the conditions. The chapter on input and output demonstrates how to design programs to create dialogs with users (e.g., participants in studies) and read and write data to and from external files. Chapter 7 reviews the data types available in MATLAB. Readers learn how to write a program as a stand-alone module in Chapter 8. In Chapters 9 and 10 readers learn how to create line and bar graphs or reshape images. Readers learn how to create animations and sounds in Chapter 11. The book concludes with tips on how to use MATLAB with applications such as GUIs and Psychtoolbox. Intended as a primary text for Matlab courses for advanced undergraduate and/or graduate students in experimental and cognitive psychology and/or neuroscience as well as a supplementary text for labs in data (statistical) analysis, research methods, and computational modeling (programming), the book also appeals to individual researchers in these disciplines who wish to get up and running in MATLAB.
Until recently, acquiring a background in the basic methodological principles that apply to most types of investigations meant struggling to obtain results through laborious calculations. The advent of statistical software packages has removed much of the tedium and many of the errors of manual calculations and allowed a marked increase in the depth and sophistication of analyses. Although most statistics classes now incorporate some instruction in using a statistics package, most introductory texts do not. Quantitative Investigations in the Biosciences using MINITAB fills this void by providing an introduction to investigative methods that, in addition to outlining statistical principles and describing methods of calculations, also presents essential commands and interprets output from the statistics package MINITAB. The author introduces the three basic elements of investigations-design, analysis, and reporting-using an extremely accessible approach that keeps mathematical detail to a minimum. He groups statistical tests according to the type of problem they are used to examine, such as comparisons, sequential relationships, and associations. Quantitative Investigations in the Biosciences using MINITAB draws techniques and examples from a variety of subjects, ranging from physiology and biochemistry through to ecology, behavioral sciences, medicine, agriculture and horticulture, and complements the mathematical results with formal conclusions for all of the worked examples. It thus provides an ideal handbook for anyone in virtually any field who wants to apply statistical techniques to their investigations.
Written for the practicing electronics professional, Tolerance Analysis of Electronic Circuits Using MATHCADä offers a comprehensive, step-by-step treatment of methods used to perform analyses essential to the design process of circuit cards and systems of cards, including:
A step-by-step approach to problem-solving techniques using SPSS(R) in the fields of sports science and physical education Featuring a clear and accessible approach to the methods, processes, and statistical techniques used in sports science and physical education, Sports Research with Analytical Solution using SPSS(R) emphasizes how to conduct and interpret a range of statistical analysis using SPSS. The book also addresses issues faced by research scholars in these fields by providing analytical solutions to various research problems without reliance on mathematical rigor. Logically arranged to cover both fundamental and advanced concepts, the book presents standard univariate and complex multivariate statistical techniques used in sports research such as multiple regression analysis, discriminant analysis, cluster analysis, and factor analysis. The author focuses on the treatment of various parametric and nonparametric statistical tests, which are shown through the techniques and interpretations of the SPSS outputs that are generated for each analysis. Sports Research with Analytical Solution using SPSS(R) also features: * Numerous examples and case studies to provide readers with practical applications of the analytical concepts and techniques * Plentiful screen shots throughout to help demonstrate the implementation of SPSS outputs * Illustrative studies with simulated realistic data to clarify the analytical techniques covered * End-of-chapter short answer questions, multiple choice questions, assignments, and practice exercises to help build a better understanding of the presented concepts * A companion website with associated SPSS data files and PowerPoint(R) presentations for each chapter Sports Research with Analytical Solution using SPSS(R) is an excellent textbook for upper-undergraduate, graduate, and PhD-level courses in research methods, kinesiology, sports science, medicine, nutrition, health education, and physical education. The book is also an ideal reference for researchers and professionals in the fields of sports research, sports science, physical education, and social sciences, as well as anyone interested in learning SPSS.
This book presents a theoretical and practical overview of computational modeling in bioengineering, focusing on a range of applications including electrical stimulation of neural and cardiac tissue, implantable drug delivery, cancer therapy, biomechanics, cardiovascular dynamics, as well as fluid-structure interaction for modelling of organs, tissues, cells and devices. It covers the basic principles of modeling and simulation with ordinary and partial differential equations using MATLAB and COMSOL Multiphysics numerical software. The target audience primarily comprises postgraduate students and researchers, but the book may also be beneficial for practitioners in the medical device industry.
Stress Testing and Risk Integration in Banks provides a comprehensive view of the risk management activity by means of the stress testing process. An introduction to multivariate time series modeling paves the way to scenario analysis in order to assess a bank resilience against adverse macroeconomic conditions. Assets and liabilities are jointly studied to highlight the key issues that a risk manager needs to face. A multi-national bank prototype is used all over the book for diving into market, credit, and operational stress testing. Interest rate, liquidity and other major risks are also studied together with the former to outline how to implement a fully integrated risk management toolkit. Examples, business cases, and exercises worked in Matlab and R facilitate readers to develop their own models and methodologies.
Provides researchers with a reproducible research workflow for using R/RStudio to make the entire researchprocess reproducible; from data gathering, to analysis, to presentation Includes instructions not only for creating reproducible research in R, but also extensively discusses how to take advantage of recent developments in RStudio. Emphasizes the presentation of reproducible research with non-print formats such as HTML5 slideshows, blogs, and other web-based content. Covers a range of techniques to organize and remotely store files at all stages of the research process. These techniques both streamline the research process, especially by making revisions easier, and enhance The book itself will be reproducible, as all of the data, analysis, and markup files will be made available online.
Statistical Programming in SAS Second Edition provides a foundation for programming to implement statistical solutions using SAS, a system that has been used to solve data analytic problems for more than 40 years. The author includes motivating examples to inspire readers to generate programming solutions. Upper-level undergraduates, beginning graduate students, and professionals involved in generating programming solutions for data-analytic problems will benefit from this book. The ideal background for a reader is some background in regression modeling and introductory experience with computer programming. The coverage of statistical programming in the second edition includes Getting data into the SAS system, engineering new features, and formatting variables Writing readable and well-documented code Structuring, implementing, and debugging programs that are well documented Creating solutions to novel problems Combining data sources, extracting parts of data sets, and reshaping data sets as needed for other analyses Generating general solutions using macros Customizing output Producing insight-inspiring data visualizations Parsing, processing, and analyzing text Programming solutions using matrices and connecting to R Processing text Programming with matrices Connecting SAS with R Covering topics that are part of both base and certification exams.
R is now the most widely used statistical package/language in university statistics departments and many research organisations. Its great advantages are that for many years it has been the leading-edge statistical package/language and that it can be freely downloaded from the R web site. Its cooperative development and open code also attracts many contributors meaning that the modelling and data analysis possibilities in R are much richer than in GLIM4, and so the R edition can be substantially more comprehensive than the GLIM4 edition. This text provides a comprehensive treatment of the theory of statistical modelling in R with an emphasis on applications to practical problems and an expanded discussion of statistical theory. A wide range of case studies is provided, using the normal, binomial, Poisson, multinomial, gamma, exponential and Weibull distributions, making this book ideal for graduates and research students in applied statistics and a wide range of quantitative disciplines.
The purpose of this handbook is to allow users to learn and master the mathematics software package MATLAB (R), as well as to serve as a quick reference to some of the most used instructions in the package. A unique feature of this handbook is that it can be used by the novice and by experienced users alike. For experienced users, it has four chapters with examples and applications in engineering, finance, physics, and optimization. Exercises are included, along with solutions available for the interested reader on the book's web page. These exercises are a complement for the interested reader who wishes to get a deeper understanding of MATLAB. Features Covers both MATLAB and introduction to Simulink Covers the use of GUIs in MATLAB and Simulink Offers downloadable examples and programs from the handbook's website Provides an introduction to object oriented programming using MATLAB Includes applications from many areas Includes the realization of executable files for MATLAB programs and Simulink models
This primer has been designed as a self-instructional text which serves to introduce the reader to both the principles of statistical modelling of covariance structures and to the use of the EQS software package. It is divided into three parts - the first covering the basic ideas and language of covariance structure modelling together with an introduction to the EQS package. The second section covers a wide variety of models suitable for cross-sectional and longitudinal data and the final section discusses a wide variety of practical problems. This book should be of interest to researchers in psychology, sociology and medicine who use the EQS software; applied and consultant statisticians.
This book is a valuable read for a diverse group of researchers and practitioners who analyze assessment data and construct test instruments. It focuses on the use of classical test theory (CTT) and item response theory (IRT), which are often required in the fields of psychology (e.g. for measuring psychological traits), health (e.g. for measuring the severity of disorders), and education (e.g. for measuring student performance), and makes these analytical tools accessible to a broader audience. Having taught assessment subjects to students from diverse backgrounds for a number of years, the three authors have a wealth of experience in presenting educational measurement topics, in-depth concepts and applications in an accessible format. As such, the book addresses the needs of readers who use CTT and IRT in their work but do not necessarily have an extensive mathematical background. The book also sheds light on common misconceptions in applying measurement models, and presents an integrated approach to different measurement methods, such as contrasting CTT with IRT and multidimensional IRT models with unidimensional IRT models. Wherever possible, comparisons between models are explicitly made. In addition, the book discusses concepts for test equating and differential item functioning, as well as Bayesian IRT models and plausible values using simple examples. This book can serve as a textbook for introductory courses on educational measurement, as supplementary reading for advanced courses, or as a valuable reference guide for researchers interested in analyzing student assessment data.
Make bookkeeping a breeze with Sage Sage 50 Accounts is a tremendously popular resource among accounting professionals, and exciting upgrades in version 22 make it even more useful. This book helps you use get started with installation as well as customisation, and in a short time you'll be running VAT returns and producing reports. Newer features help you store copies on the cloud, access data from anywhere and much more. Inside...* Fully updated screenshots * How to use Sage Drive * A guide to key buttons * New ways to access tasks * Toolbar configuration tips * Valuable window shortcuts * How to process paperwork * Project management help * Tips on using mobile apps
New Paradigm for considering application integration and B2B problems Heightens the importance of conveying meaning between systems Addresses movement in the EAI space toward more data handling capabilities Offers a solution for the multitude of managers disconnected with the latest technologies Leverages the technical advances made in complex data integration over 15 years Shifts the focus from technology solutions to information solutions Relies heavily on the use of practical examples, tips, definitions, and soapbox excerpts throughout the main body of text
An Introduction to Stata for Health Researchers, Fifth Edition updates this classic book that has become a standard reference for health researchers. As with previous editions, readers will learn to work effectively in Stata to perform data management, compute descriptive statistics, create meaningful graphs, fit regression models, and perform survival analysis. The fifth edition adds examples of performing power, precision, and sample-size analysis; working with Unicode characters; managing data with ICD-9 and ICD-10 codes; and creating customized tables. With many worked examples and downloadable datasets, this text is the ideal resource for hands-on learning, whether for students in a statistics course or for researchers in fields such as epidemiology, biostatistics, and public health who are learning to use Stata's tools for health research.
A Hands-On Approach to Understanding and Using Actuarial Models Computational Actuarial Science with R provides an introduction to the computational aspects of actuarial science. Using simple R code, the book helps you understand the algorithms involved in actuarial computations. It also covers more advanced topics, such as parallel computing and C/C++ embedded codes. After an introduction to the R language, the book is divided into four parts. The first one addresses methodology and statistical modeling issues. The second part discusses the computational facets of life insurance, including life contingencies calculations and prospective life tables. Focusing on finance from an actuarial perspective, the next part presents techniques for modeling stock prices, nonlinear time series, yield curves, interest rates, and portfolio optimization. The last part explains how to use R to deal with computational issues of nonlife insurance. Taking a do-it-yourself approach to understanding algorithms, this book demystifies the computational aspects of actuarial science. It shows that even complex computations can usually be done without too much trouble. Datasets used in the text are available in an R package (CASdatasets).
Designed to help readers analyze and interpret research data using IBM SPSS, this user-friendly book shows readers how to choose the appropriate statistic based on the design; perform intermediate statistics, including multivariate statistics; interpret output; and write about the results. The book reviews research designs and how to assess the accuracy and reliability of data; how to determine whether data meet the assumptions of statistical tests; how to calculate and interpret effect sizes for intermediate statistics, including odds ratios for logistic and discriminant analyses; how to compute and interpret post-hoc power; and an overview of basic statistics for those who need a review. Unique chapters on multilevel linear modeling; multivariate analysis of variance (MANOVA); assessing reliability of data; multiple imputation; mediation, moderation, and canonical correlation; and factor analysis are provided. SPSS syntax with output is included for those who prefer this format. The new edition features: IBM SPSS version 22; although the book can be used with most older and newer versions New discusiion of intraclass correlations (Ch. 3) Expanded discussion of effect sizes that includes confidence intervals of effect sizes (ch.5) New information on part and partial correlations and how they are interpreted and a new discussion on backward elimination, another useful multiple regression method (Ch. 6) New chapter on how use a variable as a mediator or a moderator (ch. 7) Revised chapter on multilevel and hierarchical linear modeling (ch. 12) A new chapter (ch. 13) on multiple imputation that demonstrates how to deal with missing data Updated web resources for instructors including PowerPoint slides, answers to interpretation questions, extra SPSS problems and for students, data sets, and chapter outlines and study guides. " IBM SPSS for Intermediate Statistics, Fifth Edition "provides helpful teaching tools: all of the key SPSS windows needed to perform the analyses outputs with call-out boxes to highlight key points interpretation sections and questions to help students better understand and interpret the output extra problems with realistic data sets for practice using intermediate statistics Appendices on how to get started with SPSS, write research questions, and basic statistics. An ideal supplement for courses in either intermediate/advanced statistics or research methods taught in departments of psychology, education, and other social, behavioral, and health sciences. This book is also appreciated by researchers in these areas looking for a handy reference for SPSS" |
You may like...
The Jews of Denmark in the Holocaust…
Silvia Tarabini Fracapane
Paperback
R1,314
Discovery Miles 13 140
Facing the Catastrophe - Jews and…
Beate Kosmala, Georgi Verbeeck
Hardcover
R3,343
Discovery Miles 33 430
Teaching Holocaust Literature and Film
R. Eaglestone, B. Langford
Hardcover
R1,391
Discovery Miles 13 910
Little Bird Of Auschwitz - How My Mother…
Alina Peretti, Jacques Peretti
Paperback
|