![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Computer software packages > Other software packages
Proceedings of the 19th international symposium on computational statistics, held in Paris august 22-27, 2010.Together with 3 keynote talks, there were 14 invited sessions and more than 100 peer-reviewed contributed communications.
Today, certain computer software systems exist which surpass the computational ability of researchers when their mathematical techniques are applied to many areas of science and engineering. These computer systems can perform a large portion of the calculations seen in mathematical analysis. Despite this massive power, thousands of people use these systems as a routine resource for everyday calculations. These software programs are commonly called "Computer Algebra" systems. They have names such as MACSYMA, MAPLE, muMATH, REDUCE and SMP. They are receiving credit as a computational aid with in creasing regularity in articles in the scientific and engineering literature. When most people think about computers and scientific research these days, they imagine a machine grinding away, processing numbers arithmetically. It is not generally realized that, for a number of years, computers have been performing non-numeric computations. This means, for example, that one inputs an equa tion and obtains a closed form analytic answer. It is these Computer Algebra systems, their capabilities, and applications which are the subject of the papers in this volume."
Optical Scanning Holography is an exciting new field with many potential novel applications. This book contains tutorials, research materials, as well as new ideas and insights that will be useful for those working in the field of optics and holography. The book has been written by one of the leading researchers in the field. It covers the basic principles of the topic which will make the book relevant for years to come.
In many fields of modern mathematics specialised scientific
software becomes increasingly important. Hence, tremendous effort
is taken by numerous groups all over the world to develop
appropriate solutions.
Based on the ontology and semantics of algebra, the computer algebra system Magma enables users to rapidly formulate and perform calculations in abstract parts of mathematics. Edited by the principal designers of the program, this book explores Magma. Coverage ranges from number theory and algebraic geometry, through representation theory and group theory to discrete mathematics and graph theory. Includes case studies describing computations underpinning new theoretical results.
The first edition was released in 1996 and has sold close to 2200 copies. Provides an up-to-date comprehensive treatment of MDS, a statistical technique used to analyze the structure of similarity or dissimilarity data in multidimensional space. The authors have added three chapters and exercise sets. The text is being moved from SSS to SSPP. The book is suitable for courses in statistics for the social or managerial sciences as well as for advanced courses on MDS. All the mathematics required for more advanced topics is developed systematically in the text.
Although there are currently a wide variety of software packages suitable for the modern statistician, R has the triple advantage of being comprehensive, widespread, and free. Published in 2008, the second edition of Statistiques avec R enjoyed great success as an R guidebook in the French-speaking world. Translated and updated, R for Statistics includes a number of expanded and additional worked examples. Organized into two sections, the book focuses first on the R software, then on the implementation of traditional statistical methods with R. Focusing on the R software, the first section covers:
The second section of the book presents R methods for a wide range of traditional statistical data processing techniques, including:
After a short presentation of the method, the book explicitly details the R command lines and gives commented results. Accessible to novices and experts alike, R for Statistics is a clear and enjoyable resource for any scientist. Datasets and all the results described in this book are available on the book s webpage at http: //www.agrocampus-ouest.fr/math/RforStat
The contributions in this book state the complementary rather than competitive relationship between Probability and Fuzzy Set Theory and allow solutions to real life problems with suitable combinations of both theories.
Patients are not alike! This simple truth is often ignored in the analysis of me- cal data, since most of the time results are presented for the "average" patient. As a result, potential variability between patients is ignored when presenting, e.g., the results of a multiple linear regression model. In medicine there are more and more attempts to individualize therapy; thus, from the author's point of view biostatis- cians should support these efforts. Therefore, one of the tasks of the statistician is to identify heterogeneity of patients and, if possible, to explain part of it with known explanatory covariates. Finite mixture models may be used to aid this purpose. This book tries to show that there are a large range of applications. They include the analysis of gene - pression data, pharmacokinetics, toxicology, and the determinants of beta-carotene plasma levels. Other examples include disease clustering, data from psychophysi- ogy, and meta-analysis of published studies. The book is intended as a resource for those interested in applying these methods.
This book helps readers understand the mathematics of machine learning, and apply them in different situations. It is divided into two basic parts, the first of which introduces readers to the theory of linear algebra, probability, and data distributions and it's applications to machine learning. It also includes a detailed introduction to the concepts and constraints of machine learning and what is involved in designing a learning algorithm. This part helps readers understand the mathematical and statistical aspects of machine learning. In turn, the second part discusses the algorithms used in supervised and unsupervised learning. It works out each learning algorithm mathematically and encodes it in R to produce customized learning applications. In the process, it touches upon the specifics of each algorithm and the science behind its formulation. The book includes a wealth of worked-out examples along with R codes. It explains the code for each algorithm, and readers can modify the code to suit their own needs. The book will be of interest to all researchers who intend to use R for machine learning, and those who are interested in the practical aspects of implementing learning algorithms for data analysis. Further, it will be particularly useful and informative for anyone who has struggled to relate the concepts of mathematics and statistics to machine learning.
This is the first workbook that introduces the multilevel approach to modeling with categorical outcomes using IBM SPSS Version 20. Readers learn how to develop, estimate, and interpret multilevel models with categorical outcomes. The authors walk readers through data management, diagnostic tools, model conceptualization, and model specification issues related to single-level and multilevel models with categorical outcomes. Screen shots clearly demonstrate techniques and navigation of the program. Modeling syntax is provided in the appendix. Examples of various types of categorical outcomes demonstrate how to set up each model and interpret the output. Extended examples illustrate the logic of model development, interpretation of output, the context of the research questions, and the steps around which the analyses are structured. Readers can replicate examples in each chapter by using the corresponding data and syntax files available at www.psypress.com/9781848729568. The book opens with a review of multilevel with categorical outcomes, followed by a chapter on IBM SPSS data management techniques to facilitate working with multilevel and longitudinal data sets. Chapters 3 and 4 detail the basics of the single-level and multilevel generalized linear model for various types of categorical outcomes. These chapters review underlying concepts to assist with trouble-shooting common programming and modeling problems. Next population-average and unit-specific longitudinal models for investigating individual or organizational developmental processes are developed. Chapter 6 focuses on single- and multilevel models using multinomial and ordinal data followed by a chapter on models for count data. The book concludes with additional trouble shooting techniques and tips for expanding on the modeling techniques introduced. Ideal as a supplement for graduate level courses and/or
professional workshops on multilevel, longitudinal, latent variable
modeling, multivariate statistics, and/or advanced quantitative
techniques taught in psychology, business, education, health, and
sociology, this practical workbook also appeals to researchers in
these fields. An excellent follow up to the authors' highly
successful Multilevel and Longitudinal Modeling with IBM SPSS and
Introduction to Multilevel Modeling Techniques, 2nd Edition, this
book can also be used with any multilevel and/or longitudinal book
or as a stand-alone text introducing multilevel modeling with
categorical outcomes.
In recent years portfolio optimization and construction methodologies have become an increasingly critical ingredient of asset and fund management, while at the same time portfolio risk assessment has become an essential ingredient in risk management. This trend will only accelerate in the coming years. This practical handbook fills the gap between current university instruction and current industry practice. It provides a comprehensive computationally-oriented treatment of modern portfolio optimization and construction methods using the powerful NUOPT for S-PLUS optimizer.
Multivariate Survival Analysis and Competing Risks introduces univariate survival analysis and extends it to the multivariate case. It covers competing risks and counting processes and provides many real-world examples, exercises, and R code. The text discusses survival data, survival distributions, frailty models, parametric methods, multivariate data and distributions, copulas, continuous failure, parametric likelihood inference, and non- and semi-parametric methods. There are many books covering survival analysis, but very few that cover the multivariate case in any depth. Written for a graduate-level audience in statistics/biostatistics, this book includes practical exercises and R code for the examples. The author is renowned for his clear writing style, and this book continues that trend. It is an excellent reference for graduate students and researchers looking for grounding in this burgeoning field of research.
Understanding Statistics in Psychology with SPSS, eighth edition, offers students a trusted, straightforward, and engaging way of learning to do statistical analyses confidently using SPSS. Comprehensive and practical, the text is organised into short accessible chapters, making it the ideal text for undergraduate psychology students needing to get to grips with statistics in class or independently. Clear diagrams and full colour screenshots from SPSS make the text suitable for beginners while the broad coverage of topics ensures that students can continue to use it as they progress to more advanced techniques. Key features * Combines coverage of statistics with full guidance on how to use SPSS to analyse data. * Suitable for use with all versions of SPSS. * Examples from a wide range of real psychological studies illustrate how statistical techniques are used in practice. * Includes clear and detailed guidance on choosing tests, interpreting findings and reporting and writing up research. * Student-focused pedagogical approach including: o Key concept boxes detailing important terms. o Focus on sections exploring complex topics in greater depth. o Explaining statistics sections clarify important statistical concepts. . Dennis Howitt and Duncan Cramer are with Loughborough University.
An authoritative introduction to the latest comparative methods in evolutionary biology Phylogenetic comparative methods are a suite of statistical approaches that enable biologists to analyze and better understand the evolutionary tree of life, and shed vital new light on patterns of divergence and common ancestry among all species on Earth. This textbook shows how to carry out phylogenetic comparative analyses in the R statistical computing environment. Liam Revell and Luke Harmon provide an incisive conceptual overview of each method along with worked examples using real data and challenge problems that encourage students to learn by doing. By working through this book, students will gain a solid foundation in these methods and develop the skills they need to interpret patterns in the tree of life. Covers every major method of modern phylogenetic comparative analysis in R Explains the basics of R and discusses topics such as trait evolution, diversification, trait-dependent diversification, biogeography, and visualization Features a wealth of exercises and challenge problems Serves as an invaluable resource for students and researchers, with applications in ecology, evolution, anthropology, disease transmission, conservation biology, and a host of other areas Written by two of today's leading developers of phylogenetic comparative methods
This book reviews some of today's more complex problems, and reflects some of the important research directions in the field. Twenty-nine authors - largely from Montreal's GERAD Multi-University Research Center and who work in areas of theoretical statistics, applied statistics, probability theory, and stochastic processes - present survey chapters on various theoretical and applied problems of importance and interest to researchers and students across a number of academic domains.
While theoretical statistics relies primarily on mathematics and hypothetical situations, statistical practice is a translation of a question formulated by a researcher into a series of variables linked by a statistical tool. As with written material, there are almost always differences between the meaning of the original text and translated text. Additionally, many versions can be suggested, each with their advantages and disadvantages. Analysis of Questionnaire Data with R translates certain classic research questions into statistical formulations. As indicated in the title, the syntax of these statistical formulations is based on the well-known R language, chosen for its popularity, simplicity, and power of its structure. Although syntax is vital, understanding the semantics is the real challenge of any good translation. In this book, the semantics of theoretical-to-practical translation emerges progressively from examples and experience, and occasionally from mathematical considerations. Sometimes the interpretation of a result is not clear, and there is no statistical tool really suited to the question at hand. Sometimes data sets contain errors, inconsistencies between answers, or missing data. More often, available statistical tools are not formally appropriate for the given situation, making it difficult to assess to what extent this slight inadequacy affects the interpretation of results. Analysis of Questionnaire Data with R tackles these and other common challenges in the practice of statistics.
This book provides a quick access to computational tools for algebraic geometry, the mathematical discipline which handles solution sets of polynomial equations. Originating from a number of intense one week schools taught by the authors, the text is designed so as to provide a step by step introduction which enables the reader to get started with his own computational experiments right away. The authors present the basic concepts and ideas in a compact way.
Arguably the strongest addition to numerical finance of the past decade, Algorithmic Adjoint Differentiation (AAD) is the technology implemented in modern financial software to produce thousands of accurate risk sensitivities, within seconds, on light hardware. AAD recently became a centerpiece of modern financial systems and a key skill for all quantitative analysts, developers, risk professionals or anyone involved with derivatives. It is increasingly taught in Masters and PhD programs in finance. Danske Bank's wide scale implementation of AAD in its production and regulatory systems won the In-House System of the Year 2015 Risk award. The Modern Computational Finance books, written by three of the very people who designed Danske Bank's systems, offer a unique insight into the modern implementation of financial models. The volumes combine financial modelling, mathematics and programming to resolve real life financial problems and produce effective derivatives software. This volume is a complete, self-contained learning reference for AAD, and its application in finance. AAD is explained in deep detail throughout chapters that gently lead readers from the theoretical foundations to the most delicate areas of an efficient implementation, such as memory management, parallel implementation and acceleration with expression templates. The book comes with professional source code in C++, including an efficient, up to date implementation of AAD and a generic parallel simulation library. Modern C++, high performance parallel programming and interfacing C++ with Excel are also covered. The book builds the code step-by-step, while the code illustrates the concepts and notions developed in the book.
Will provide a more elementary introduction to these topics than other books available; Gentle is the author of two other Springer books
MATLAB: A Practical Introduction to Programming and Problem Solving, winner of TAA's 2017 Textbook Excellence Award ("Texty"), guides the reader through both programming and built-in functions to easily exploit MATLAB's extensive capabilities for tackling engineering and scientific problems. Assuming no knowledge of programming, this book starts with programming concepts, such as variables, assignments, and selection statements, moves on to loops, and then solves problems using both the programming concept and the power of MATLAB. The sixth edition has been updated to reflect the functionality of the current version of MATLAB (R2021a), including the introduction of machine learning concepts and the Machine Learning Toolbox, and new sections on data formats and data scrubbing.
Over the last few decades, important progresses in the methods of sampling have been achieved. This book draws up an inventory of new methods that can be useful for selecting samples. Forty-six sampling methods are described in the framework of general theory. The algorithms are described rigorously, which allows implementing directly the described methods. This book is aimed at experienced statisticians who are familiar with the theory of survey sampling.
Clustering is one of the most fundamental and essential data analysis techniques. Clustering can be used as an independent data mining task to discern intrinsic characteristics of data, or as a preprocessing step with the clustering results then used for classification, correlation analysis, or anomaly detection. Kogan and his co-editors have put together recent advances in clustering large and high-dimension data. Their volume addresses new topics and methods which are central to modern data analysis, with particular emphasis on linear algebra tools, opimization methods and statistical techniques. The contributions, written by leading researchers from both academia and industry, cover theoretical basics as well as application and evaluation of algorithms, and thus provide an excellent state-of-the-art overview. The level of detail, the breadth of coverage, and the comprehensive bibliography make this book a perfect fit for researchers and graduate students in data mining and in many other important related application areas.
Provides researchers with a reproducible research workflow for using R/RStudio to make the entire researchprocess reproducible; from data gathering, to analysis, to presentation Includes instructions not only for creating reproducible research in R, but also extensively discusses how to take advantage of recent developments in RStudio. Emphasizes the presentation of reproducible research with non-print formats such as HTML5 slideshows, blogs, and other web-based content. Covers a range of techniques to organize and remotely store files at all stages of the research process. These techniques both streamline the research process, especially by making revisions easier, and enhance The book itself will be reproducible, as all of the data, analysis, and markup files will be made available online.
SharePoint is gaining recognition as a full-fledged application server with many features and enhancements that specifically allow non-developers to create sophisticated intranet sites. However, with the 2010 release, Microsoft's SharePoint increasingly becomes a compelling development platform. The strong application programming interface (API), its highly extensible nature, and its foundation on the underlying .NET Framework all generate the perfect storm to make it one of the most powerful web development platforms available. However, with power comes complexity. The wide range of usage scenarios make it difficult for developers to grasp the full ability of this next-generation platform. This book takes an in-depth, all-encompassing approach to programming concepts, the extensibility interfaces, and how to embrace SharePoint as a toolkit full of features available to web developers.Take an in-depth look into the internals of SharePoint. Create sophisticated applications using SharePoint controls and databases. Understand the API and use in conjunction with ASP.NET to extend SharePoint. SharePoint is more than a portal and more than an intranet. Harness its capabilities and put it to work for you. What you'll learn The hierarchy of SharePoint's API How to create rich, extensible, and broad SharePoint applications How to use SharePoint's internals How to approach SharePoint as an open toolkit rather than a closed, intranet-only model How to take advantage of SharePoint's extensibility and customize its behavior Who this book is for This book is for ASP.NET developers who want to create applications using SharePoint as a platform. It's also for users of SharePoint Designer that want to professionalize their development work. Table of Contents Developer Basics Architecture Accessing the API Data Access External Data Access Web Parts Templates Application Techniques Solution Deployment Extending the User Interface Using Web Controls Client Programming Integrating Silverlight Integrating Charts and Maps Forms Services and InfoPath Workflows Administrative Tasks Enterprise Features |
You may like...
Dignaga's Investigation of the Percept…
Douglas Duckworth, Malcolm David Eckel, …
Hardcover
R3,758
Discovery Miles 37 580
1 Recce: Volume 3 - Onsigbaarheid Is Ons…
Alexander Strachan
Paperback
Introduction to Christian Counseling and…
Pearlie Braswell-Tripp, Pearlie Ph D Braswell-Tripp
Hardcover
R847
Discovery Miles 8 470
Behind Prison Walls - Unlocking a Safer…
Edwin Cameron, Rebecca Gore, …
Paperback
|