![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Computer software packages > Other software packages
Accessible to a general audience with some background in statistics and computing Many examples and extended case studies Illustrations using R and Rstudio A true blend of statistics and computer science -- not just a grab bag of topics from each
A t the terminal seated, the answering tone: pond and temple bell. ODAY as in the past, statistical method is profoundly affected by T resources for numerical calculation and visual display. The main line of development of statistical methodology during the first half of this century was conditioned by, and attuned to, the mechanical desk calculator. Now statisticians may use electronic computers of various kinds in various modes, and the character of statistical science has changed accordingly. Some, but not all, modes of modern computation have a flexibility and immediacy reminiscent of the desk calculator. They preserve the virtues of the desk calculator, while immensely exceeding its scope. Prominent among these is the computer language and conversational computing system known by the initials APL. This book is addressed to statisticians. Its first aim is to interest them in using APL in their work-for statistical analysis of data, for numerical support of theoretical studies, for simulation of random processes. In Part A the language is described and illustrated with short examples of statistical calculations. Part B, presenting some more extended examples of statistical analysis of data, has also the further aim of suggesting the interplay of computing and theory that must surely henceforth be typical of the develop ment of statistical science."
Grimmett, Geoffrey: Percolation and disordered systems.- Kesten, Harry: Aspects of first passage percolation. "
Keith M. Ponting Speech Research Unit, DERA Malvern St. Andrew's Road, Great Malvern, Worcs. WR14 3PS, UK email: ponting
Accompanying the book, as with all TELOS sponsored publications, is an electronic component. In this case it is a DOS-Diskette produced by one of the coauthors, Paul Wellin. This diskette consists of "Mathematica "notebooks and packages which contain the codes for all examples and exercises in the book, as well as additional materials intended to extend many ideas covered in the text. It is of great value to teachers, students, and others using this book to learn how to effectively program with "Mathematica" .
Non-uniform random variate generation is an established research area in the intersection of mathematics, statistics and computer science. Although random variate generation with popular standard distributions have become part of every course on discrete event simulation and on Monte Carlo methods, the recent concept of universal (also called automatic or black-box) random variate generation can only be found dispersed in literature. This new concept has great practical advantages that are little known to most simulation practitioners. Being unique in its overall organization the book covers not only the mathematical and statistical theory, but also deals with the implementation of such methods. All algorithms introduced in the book are designed for practical use in simulation and have been coded and made available by the authors. Examples of possible applications of the presented algorithms (including option pricing, VaR and Bayesian statistics) are presented at the end of the book.
Algorithms for Computer Algebra is the first comprehensive textbook to be published on the topic of computational symbolic mathematics. The book first develops the foundational material from modern algebra that is required for subsequent topics. It then presents a thorough development of modern computational algorithms for such problems as multivariate polynomial arithmetic and greatest common divisor calculations, factorization of multivariate polynomials, symbolic solution of linear and polynomial systems of equations, and analytic integration of elementary functions. Numerous examples are integrated into the text as an aid to understanding the mathematical development. The algorithms developed for each topic are presented in a Pascal-like computer language. An extensive set of exercises is presented at the end of each chapter. Algorithms for Computer Algebra is suitable for use as a textbook for a course on algebraic algorithms at the third-year, fourth-year, or graduate level. Although the mathematical development uses concepts from modern algebra, the book is self-contained in the sense that a one-term undergraduate course introducing students to rings and fields is the only prerequisite assumed. The book also serves well as a supplementary textbook for a traditional modern algebra course, by presenting concrete applications to motivate the understanding of the theory of rings and fields.
This book deals with the performance analysis of closed queueing networks with general processing times and finite buffer spaces. It offers a detailed introduction to the problem and a comprehensive literature review. Two approaches to the performance of closed queueing networks are presented. One is an approximate decomposition approach, while the second is the first exact approach for finite-capacity networks with general processing times. In this Markov chain approach, queueing networks are analyzed by modeling the entire system as one Markov chain. As this approach is exact, it is well-suited both as a reference quantity for approximate procedures and as extension to other queueing networks. Moreover, for the first time, the exact distribution of the time between processing starts is provided.
The intensive use of automatic data acquisition system and the use of cloud computing for process monitoring have led to an increased occurrence of industrial processes that utilize statistical process control and capability analysis. These analyses are performed almost exclusively with multivariate methodologies. The aim of this Brief is to present the most important MSQC techniques developed in R language. The book is divided into two parts. The first part contains the basic R elements, an introduction to statistical procedures, and the main aspects related to Statistical Quality Control (SQC). The second part covers the construction of multivariate control charts, the calculation of Multivariate Capability Indices.
Note: This pocket book is available in several languages: English, German, French, Spanish, Dutch. This pocket guide is based on the PMBOK(R) Guide Fifth Edition. It contains a summary of the PMBOK(R) Guide, to provide a quick introduction as well as a structured overview of this framework for project management. This pocket guide deals with the key issues and themes within project management and the PMBOK(R) Guide as follows: - Key terms and definitions in the project management profession - A short overview of the activities of PMI Inc., the organization and its standards: PMBOK(R) Guide, Standard for Project Portfolio Management, Standard for Program Management and other standards. - The essentials of the Project Lifecycle and Organization. - What are the key project management knowledge areas and processes? Main target Group for this pocket guide is anyone with an interest in understanding the PMBOK(R) Guide framework or a systematic approach for project management. The book is also very useful for members of a project management team in a project environment using the PMBOK(R) Guide as a shared reference. A complete but concise description of the PMBOK(R) Guide, for anyone involved in projects or project management, for only 15,95!
This Handbook gives a comprehensive snapshot of a field at the intersection of mathematics and computer science with applications in physics, engineering and education. Reviews 67 software systems and offers 100 pages on applications in physics, mathematics, computer science, engineering chemistry and education.
Automatic Graph Drawing is concerned with the layout of relational structures as they occur in Computer Science (Data Base Design, Data Mining, Web Mining), Bioinformatics (Metabolic Networks), Businessinformatics (Organization Diagrams, Event Driven Process Chains), or the Social Sciences (Social Networks). In mathematical terms, such relational structures are modeled as graphs or more general objects such as hypergraphs, clustered graphs, or compound graphs. A variety of layout algorithms that are based on graph theoretical foundations have been developed in the last two decades and implemented in software systems. After an introduction to the subject area and a concise treatment of the technical foundations for the subsequent chapters, this book features 14 chapters on state-of-the-art graph drawing software systems, ranging from general "tool boxes'' to customized software for various applications. These chapters are written by leading experts, they follow a uniform scheme and can be read independently from each other.
This brief offers a broad, yet concise, coverage of portfolio choice, containing both application-oriented and academic results, along with abundant pointers to the literature for further study. It cuts through many strands of the subject, presenting not only the classical results from financial economics but also approaches originating from information theory, machine learning and operations research. This compact treatment of the topic will be valuable to students entering the field, as well as practitioners looking for a broad coverage of the topic.
Molchanov, S.: Lectures on random media.- Zeitouni, Ofer: Random walks in random environment.-den Hollander, Frank: Random polymers "
Accurate and efficient computer algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors. Regardless of the software system used, the book describes and gives examples of the use of modern computer software for numerical linear algebra. It begins with a discussion of the basics of numerical computations, and then describes the relevant properties of matrix inverses, factorisations, matrix and vector norms, and other topics in linear algebra. The book is essentially self- contained, with the topics addressed constituting the essential material for an introductory course in statistical computing. Numerous exercises allow the text to be used for a first course in statistical computing or as supplementary text for various courses that emphasise computations.
Mathematics plays an important role in many scientific and engineering disciplines. This book deals with the numerical solution of differential equations, a very important branch of mathematics. Our aim is to give a practical and theoretical account of how to solve a large variety of differential equations, comprising ordinary differential equations, initial value problems and boundary value problems, differential algebraic equations, partial differential equations and delay differential equations. The solution of differential equations using R is the main focus of this book. It is therefore intended for the practitioner, the student and the scientist, who wants to know how to use R for solving differential equations. However, it has been our goal that non-mathematicians should at least understand the basics of the methods, while obtaining entrance into the relevant literature that provides more mathematical background. Therefore, each chapter that deals with R examples is preceded by a chapter where the theory behind the numerical methods being used is introduced. In the sections that deal with the use of R for solving differential equations, we have taken examples from a variety of disciplines, including biology, chemistry, physics, pharmacokinetics. Many examples are well-known test examples, used frequently in the field of numerical analysis.
Each chapter consists of basic statistical theory, simple examples of S-PLUS code, plus more complex examples of S-PLUS code, and exercises. All data sets are taken from genuine medical investigations and will be available on a web site. The examples in the book contain extensive graphical analysis to highlight one of the prime features of S-PLUS. Written with few details of S-PLUS and less technical descriptions, the book concentrates solely on medical data sets, demonstrating the flexibility of S-PLUS and its huge advantages, particularly for applied medical statisticians.
The theory of U-statistics goes back to the fundamental work of Hoeffding 1], in which he proved the central limit theorem. During last forty years the interest to this class of random variables has been permanently increasing, and thus, the new intensively developing branch of probability theory has been formed. The U-statistics are one of the universal objects of the modem probability theory of summation. On the one hand, they are more complicated "algebraically" than sums of independent random variables and vectors, and on the other hand, they contain essential elements of dependence which display themselves in the martingale properties. In addition, the U -statistics as an object of mathematical statistics occupy one of the central places in statistical problems. The development of the theory of U-statistics is stipulated by the influence of the classical theory of summation of independent random variables: The law of large num bers, central limit theorem, invariance principle, and the law of the iterated logarithm we re proved, the estimates of convergence rate were obtained, etc."
This book provides clear explanatory text, illustrative mathematics and algorithms, demonstrations of the iterative process, pseudocode, and well-developed examples for applications of the branch-and-bound paradigm to important problems in combinatorial data analysis. Supplementary material, such as computer programs, are provided on the world wide web. Dr. Brusco is an editorial board member for the Journal of Classification, and a member of the Board of Directors for the Classification Society of North America.
A guide to using S environments to perform statistical analyses providing both an introduction to the use of S and a course in modern statistical methods. The emphasis is on presenting practical problems and full analyses of real data sets.
Most global optimization literature focuses on theory. This book, however, contains descriptions of new implementations of general-purpose or problem-specific global optimization algorithms. It discusses existing software packages from which the entire community can learn. The contributors are experts in the discipline of actually getting global optimization to work, and the book provides a source of ideas for people needing to implement global optimization software.
This book covers a highly relevant and timely topic that is of wide interest, especially in finance, engineering and computational biology. The introductory material on simulation and stochastic differential equation is very accessible and will prove popular with many readers. While there are several recent texts available that cover stochastic differential equations, the concentration here on inference makes this book stand out. No other direct competitors are known to date. With an emphasis on the practical implementation of the simulation and estimation methods presented, the text will be useful to practitioners and students with minimal mathematical background. What's more, because of the many R programs, the information here is appropriate for many mathematically well educated practitioners, too.
There are many books that are excellent sources of knowledge about individual stastical tools (survival models, general linear models, etc.), but the art of data analysis is about choosing and using multiple tools. In the words of Chatfield ..".students typically know the technical details of regressin for example, but not necessarily when and how to apply it. This argues the need for a better balance in the literature and in statistical teaching between techniques and problem solving strategies." Whether analyzing risk factors, adjusting for biases in observational studies, or developing predictive models, there are common problems that few regression texts address. For example, there are missing data in the majority of datasets one is likely to encounter (other than those used in textbooks!) but most regression texts do not include methods for dealing with such data effectively, and texts on missing data do not cover regression modeling.
Although statistical design is one of the oldest branches of statistics, its importance is ever increasing, especially in the face of the data flood that often faces statisticians. It is important to recognize the appropriate design, and to understand how to effectively implement it, being aware that the default settings from a computer package can easily provide an incorrect analysis. The goal of this book is to describe the principles that drive good design, paying attention to both the theoretical background and the problems arising from real experimental situations. Designs are motivated through actual experiments, ranging from the timeless agricultural randomized complete block, to microarray experiments, which naturally lead to split plot designs and balanced incomplete blocks.
Systems of polynomial equations arise throughout mathematics, science, and engineering. Algebraic geometry provides powerful theoretical techniques for studying the qualitative and quantitative features of their solution sets. Re cently developed algorithms have made theoretical aspects of the subject accessible to a broad range of mathematicians and scientists. The algorith mic approach to the subject has two principal aims: developing new tools for research within mathematics, and providing new tools for modeling and solv ing problems that arise in the sciences and engineering. A healthy synergy emerges, as new theorems yield new algorithms and emerging applications lead to new theoretical questions. This book presents algorithmic tools for algebraic geometry and experi mental applications of them. It also introduces a software system in which the tools have been implemented and with which the experiments can be carried out. Macaulay 2 is a computer algebra system devoted to supporting research in algebraic geometry, commutative algebra, and their applications. The reader of this book will encounter Macaulay 2 in the context of concrete applications and practical computations in algebraic geometry. The expositions of the algorithmic tools presented here are designed to serve as a useful guide for those wishing to bring such tools to bear on their own problems. A wide range of mathematical scientists should find these expositions valuable. This includes both the users of other programs similar to Macaulay 2 (for example, Singular and CoCoA) and those who are not interested in explicit machine computations at all." |
You may like...
Data Communication and Computer Networks…
Jill West, Curt M. White
Paperback
14th International Symposium on Process…
Yoshiyuki Yamashita, Manabu Kano
Hardcover
R11,098
Discovery Miles 110 980
Multi-Criteria Decision-Making Sorting…
Luis Martinez Lopez, Alessio Ishizaka, …
Paperback
R2,948
Discovery Miles 29 480
29th European Symposium on Computer…
Anton A Kiss, Edwin Zondervan, …
Hardcover
R11,317
Discovery Miles 113 170
Database Systems - Design…
Carlos Coronel, Steven Morris
Paperback
|