![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Computer software packages > Other software packages
Methods of Statistical Model Estimation examines the most important and popular methods used to estimate parameters for statistical models and provide informative model summary statistics. Designed for R users, the book is also ideal for anyone wanting to better understand the algorithms used for statistical model fitting. The text presents algorithms for the estimation of a variety of regression procedures using maximum likelihood estimation, iteratively reweighted least squares regression, the EM algorithm, and MCMC sampling. Fully developed, working R code is constructed for each method. The book starts with OLS regression and generalized linear models, building to two-parameter maximum likelihood models for both pooled and panel models. It then covers a random effects model estimated using the EM algorithm and concludes with a Bayesian Poisson model using Metropolis-Hastings sampling. The book's coverage is innovative in several ways. First, the authors use executable computer code to present and connect the theoretical content. Therefore, code is written for clarity of exposition rather than stability or speed of execution. Second, the book focuses on the performance of statistical estimation and downplays algebraic niceties. In both senses, this book is written for people who wish to fit statistical models and understand them. See Professor Hilbe discuss the book.
Basic Statistics provides an accessible and comprehensive introduction to statistics using the free, state-of-the-art, powerful software program R. This book is designed to both introduce students to key concepts in statistics and to provide simple instructions for using R. This concise book: *Teaches essential concepts in statistics, assuming little background knowledge on the part of the reader *Introduces students to R with as few sub-commands as possible for ease of use *Provides practical examples from the educational, behavioral, and social sciences With clear explanations of statistical processes and step-by-step commands in R, Basic Statistics will appeal to students and professionals across the social and behavioral sciences.
This work addresses the notion of compression ratios greater than what has been known for random sequential strings in binary and larger radix-based systems as applied to those traditionally found in Kolmogorov complexity. A culmination of the author's decade-long research that began with his discovery of a compressible random sequential string, the book maintains a theoretical-statistical level of introduction suitable for mathematical physicists. It discusses the application of ternary-, quaternary-, and quinary-based systems in statistical communication theory, computing, and physics.
Written with medical statisticians and medical researchers in mind, this intermediate-level reference explores the use of SAS for analyzing medical data. Applied Medical Statistics Using SAS covers the whole range of modern statistical methods used in the analysis of medical data, including regression, analysis of variance and covariance, longitudinal and survival data analysis, missing data, generalized additive models (GAMs), and Bayesian methods. The book focuses on performing these analyses using SAS, the software package of choice for those analysing medical data. Features
Its breadth and depth, coupled with the inclusion of all the SAS code, make this book ideal for practitioners as well as for a graduate class in biostatistics or public health. Complete data sets, all the SAS code, and complete outputs can be found on an associated website: http: //support.sas.com/amsus
Ever-changing business needs have prompted large companies to
rethink their enterprise IT. Today, businesses must allow
interaction with their customers, partners, and employees at more
touch points and at a depth never thought previously. At the same
time, rapid advances in information technologies, like business
digitization, cloud computing, and Web 2.0, demand fundamental
changes in the enterprises management practices. These changes have
a drastic effect not only on IT and business, but also on policies,
processes, and people. Many companies therefore embark on
enterprise-wide transformation initiatives. The role of Enterprise
Architecture (EA) is to architect and supervise this
transformational journey. Unfortunately, today s EA is often a
ponderous and detached exercise, with most of the EA initiatives
failing to create visible impact. The enterprises need an EA that
is agile and responsive to business dynamics. "Collaborative
Enterprise Architecture" provides the innovative solutions today s
enterprises require, informed by real-world experiences and experts
insights. This book, in its first part, provides a systematic
compendium of the current best practices in EA, analyzes current
ways of doing EA, and identifies its constraints and shortcomings.
In the second part, it leaves the beaten tracks of EA by
introducing Lean, Agile, and Enterprise 2.0 concepts to the
traditional EA methods. This blended approach to EA focuses on
practical aspects, with recommendations derived from real-world
experiences. A truly thought provoking and pragmatic guide to
manage EA, "Collaborative Enterprise Architecture" effectively
merges the long-term oriented top-down approach with pragmatic
bottom-up thinking, and that way offers real solutions to
businesses undergoing enterprise-wide change.
Master the application of artificial intelligence in your enterprise with the book series trusted by millions In Enterprise AI For Dummies, author Zachary Jarvinen simplifies and explains to readers the complicated world of artificial intelligence for business. Using practical examples, concrete applications, and straightforward prose, the author breaks down the fundamental and advanced topics that form the core of business AI. Written for executives, managers, employees, consultants, and students with an interest in the business applications of artificial intelligence, Enterprise AI For Dummies demystifies the sometimes confusing topic of artificial intelligence. No longer will you lag behind your colleagues and friends when discussing the benefits of AI and business. The book includes discussions of AI applications, including: Streamlining business operations Improving decision making Increasing automation Maximizing revenue The For Dummies series makes topics understandable, and as such, this book is written in an easily understood style that's perfect for anyone who seeks an introduction to a usually unforgiving topic.
Programming Graphical User Interfaces with R introduces each of the major R packages for GUI programming: RGtk2, qtbase, Tcl/Tk, and gWidgets. With examples woven through the text as well as stand-alone demonstrations of simple yet reasonably complete applications, the book features topics especially relevant to statisticians who aim to provide a practical interface to functionality implemented in R. The book offers: A how-to guide for developing GUIs within R The fundamentals for users with limited knowledge of programming within R and other languages GUI design for specific functions or as learning tools The accompanying package, ProgGUIinR, includes the complete code for all examples as well as functions for browsing the examples from the respective chapters. Accessible to seasoned, novice, and occasional R users, this book shows that for many purposes, adding a graphical interface to one's work is not terribly sophisticated or time consuming.
This book is a timely and critical introduction for those interested in what data science is (and isn't), and how it should be applied. The language is conversational and the content is accessible for readers without a quantitative or computational background; but, at the same time, it is also a practical overview of the field for the more technical readers. The overarching goal is to demystify the field and teach the reader how to develop an analytical mindset instead of following recipes. The book takes the scientist's approach of focusing on asking the right question at every step as this is the single most important factor contributing to the success of a data science project. Upon finishing this book, the reader should be asking more questions than I have answered. This book is, therefore, a practising scientist's approach to explaining data science through questions and examples.
* Targests readers with a background in programming, interested in an introduction/refresher in statistical hypothesis testing * Uses Python throughout * Provides the reader with the opportunity of using the book whenever needed rather than following a sequential path.
Get to grips with Sage One in simple steps. Sage One For Dummies explains every aspect of setting up and navigating Sage One, the newest accounting solution for small businesses and sole traders. It includes clear instructions for using Sage One Accounts including setting up customer and supplier records, creating invoices, paying customers and suppliers, bank reconciliation, VAT returns and reporting. It also explains how to use the Cashbook function (if your business is more cash-based) and how to work with your accountant using the Accountant Edition. Packed with step-by-step instructions and fully illustrated with screenshots, this book is the easiest way to get the most from Sage One and take control of your business finances. * Shows readers how to set up, install and navigate using dummy data * Features setting up customer & supplier records * Details how to create invoices for customers and suppliers * Enables the reader to produce their own reports
With the advancement of statistical methodology inextricably linked to the use of computers, new methodological ideas must be translated into usable code and then numerically evaluated relative to competing procedures. In response to this, Statistical Computing in C++ and R concentrates on the writing of code rather than the development and study of numerical algorithms per se. The book discusses code development in C++ and R and the use of these symbiotic languages in unison. It emphasizes that each offers distinct features that, when used in tandem, can take code writing beyond what can be obtained from either language alone. The text begins with some basics of object-oriented languages, followed by a "boot-camp" on the use of C++ and R. The authors then discuss code development for the solution of specific computational problems that are relevant to statistics including optimization, numerical linear algebra, and random number generation. Later chapters introduce abstract data structures (ADTs) and parallel computing concepts. The appendices cover R and UNIX Shell programming. Features Includes numerous student exercises ranging from elementary to challenging Integrates both C++ and R for the solution of statistical computing problems Uses C++ code in R and R functions in C++ programs Provides downloadable programs, available from the authors' website The translation of a mathematical problem into its computational analog (or analogs) is a skill that must be learned, like any other, by actively solving relevant problems. The text reveals the basic principles of algorithmic thinking essential to the modern statistician as well as the fundamental skill of communicating with a computer through the use of the computer languages C++ and R. The book lays the foundation for original code development in a research environment.
For a variety of reasons, the MATLAB(r)-Java interface was never fully documented. This is really quite unfortunate: Java is one of the most widely used programming languages, having many times the number of programmers and programming resources as MATLAB. Also unfortunate is the popular claim that while MATLAB is a fine programming platform for prototyping, it is not suitable for real-world, modern-looking applications. Undocumented Secrets of MATLAB(r)-Java Programming aims to correct this misconception. This book shows how using Java can significantly improve MATLAB program appearance and functionality, and that this can be done easily and even without any prior Java knowledge. Readers are led step-by-step from simple to complex customizations. Code snippets, screenshots, and numerous online references are provided to enable the utilization of this book as both a sequential tutorial and as a random-access reference suited for immediate use. Java-savvy readers will find it easy to tailor code samples for their particular needs; for Java newcomers, an introduction to Java and numerous online references are provided. This book demonstrates how
There is a huge amount of literature on statistical models for the prediction of survival after diagnosis of a wide range of diseases like cancer, cardiovascular disease, and chronic kidney disease. Current practice is to use prediction models based on the Cox proportional hazards model and to present those as static models for remaining lifetime after diagnosis or treatment. In contrast, Dynamic Prediction in Clinical Survival Analysis focuses on dynamic models for the remaining lifetime at later points in time, for instance using landmark models. Designed to be useful to applied statisticians and clinical epidemiologists, each chapter in the book has a practical focus on the issues of working with real life data. Chapters conclude with additional material either on the interpretation of the models, alternative models, or theoretical background. The book consists of four parts: * Part I deals with prognostic models for survival data using (clinical) information available at baseline, based on the Cox model * Part II is about prognostic models for survival data using (clinical) information available at baseline, when the proportional hazards assumption of the Cox model is violated * Part III is dedicated to the use of time-dependent information in dynamic prediction * Part IV explores dynamic prediction models for survival data using genomic data Dynamic Prediction in Clinical Survival Analysis summarizes cutting-edge research on the dynamic use of predictive models with traditional and new approaches. Aimed at applied statisticians who actively analyze clinical data in collaboration with clinicians, the analyses of the different data sets throughout the book demonstrate how predictive models can be obtained from proper data sets.
Principles and Practice of Big Data: Preparing, Sharing, and Analyzing Complex Information, Second Edition updates and expands on the first edition, bringing a set of techniques and algorithms that are tailored to Big Data projects. The book stresses the point that most data analyses conducted on large, complex data sets can be achieved without the use of specialized suites of software (e.g., Hadoop), and without expensive hardware (e.g., supercomputers). The core of every algorithm described in the book can be implemented in a few lines of code using just about any popular programming language (Python snippets are provided). Through the use of new multiple examples, this edition demonstrates that if we understand our data, and if we know how to ask the right questions, we can learn a great deal from large and complex data collections. The book will assist students and professionals from all scientific backgrounds who are interested in stepping outside the traditional boundaries of their chosen academic disciplines.
This book Algebraic Modeling Systems - Modeling and Solving Real World Optimization Problems - deals with the aspects of modeling and solving real-world optimization problems in a unique combination. It treats systematically the major algebraic modeling languages (AMLs) and modeling systems (AMLs) used to solve mathematical optimization problems. AMLs helped significantly to increase the usage of mathematical optimization in industry. Therefore it is logical consequence that the GOR (Gesellschaft fur Operations Research) Working Group Mathematical Optimization in Real Life had a second meeting devoted to AMLs, which, after 7 years, followed the original 71st Meeting of the GOR (Gesellschaft fur Operations Research) Working Group Mathematical Optimization in Real Life which was held under the title Modeling Languages in Mathematical Optimization during April 23-25, 2003 in the German Physics Society Conference Building in Bad Honnef, Germany. While the first meeting resulted in the book Modeling Languages in Mathematical Optimization, this book is an offspring of the 86th Meeting of the GOR working group which was again held in Bad Honnef under the title Modeling Languages in Mathematical Optimization.
The purpose of this handbook is to allow users to learn and master the mathematics software package MATLAB (R), as well as to serve as a quick reference to some of the most used instructions in the package. A unique feature of this handbook is that it can be used by the novice and by experienced users alike. For experienced users, it has four chapters with examples and applications in engineering, finance, physics, and optimization. Exercises are included, along with solutions available for the interested reader on the book's web page. These exercises are a complement for the interested reader who wishes to get a deeper understanding of MATLAB. Features Covers both MATLAB and introduction to Simulink Covers the use of GUIs in MATLAB and Simulink Offers downloadable examples and programs from the handbook's website Provides an introduction to object oriented programming using MATLAB Includes applications from many areas Includes the realization of executable files for MATLAB programs and Simulink models
Analyzing Health Data in R for SAS Users is aimed at helping health data analysts who use SAS accomplish some of the same tasks in R. It is targeted to public health students and professionals who have a background in biostatistics and SAS software, but are new to R. For professors, it is useful as a textbook for a descriptive or regression modeling class, as it uses a publicly-available dataset for examples, and provides exercises at the end of each chapter. For students and public health professionals, not only is it a gentle introduction to R, but it can serve as a guide to developing the results for a research report using R software. Features: Gives examples in both SAS and R Demonstrates descriptive statistics as well as linear and logistic regression Provides exercise questions and answers at the end of each chapter Uses examples from the publicly available dataset, Behavioral Risk Factor Surveillance System (BRFSS) 2014 data Guides the reader on producing a health analysis that could be published as a research report Gives an example of hypothesis-driven data analysis Provides examples of plots with a color insert
After the great expansion of genome-wide association studies, their scientific methodology and, notably, their data analysis has matured in recent years, and they are a keystone in large epidemiological studies. Newcomers to the field are confronted with a wealth of data, resources and methods. This book presents current methods to perform informative analyses using real and illustrative data with established bioinformatics tools and guides the reader through the use of publicly available data. Includes clear, readable programming codes for readers to reproduce and adapt to their own data. Emphasises extracting biologically meaningful associations between traits of interest and genomic, transcriptomic and epigenomic data Uses up-to-date methods to exploit omic data Presents methods through specific examples and computing sessions Supplemented by a website, including code, datasets, and solutions
Get productive quickly with Pentaho Data Integration Key Features Take away the pain of starting with a complex and powerful system Simplify your data transformation and integration work Explore, transform, and validate your data with Pentaho Data Integration Book DescriptionPentaho Data Integration(PDI) is an intuitive and graphical environment packed with drag and drop design and powerful Extract-Transform-Load (ETL) capabilities. Given its power and flexibility, initial attempts to use the Pentaho Data Integration tool can be difficult or confusing. This book is the ideal solution. This book reduces your learning curve with PDI. It provides the guidance needed to make you productive, covering the main features of Pentaho Data Integration. It demonstrates the interactive features of the graphical designer, and takes you through the main ETL capabilities that the tool offers. By the end of the book, you will be able to use PDI for extracting, transforming, and loading the types of data you encounter on a daily basis. What you will learn Design, preview and run transformations in Spoon Run transformations using the Pan utility Understand how to obtain data from different types of files Connect to a database and explore it using the database explorer Understand how to transform data in a variety of ways Understand how to insert data into database tables Design and run jobs for sequencing tasks and sending emails Combine the execution of jobs and transformations Who this book is forThis book is for software developers, business intelligence analysts, and others involved or interested in developing ETL solutions, or more generally, doing any kind of data manipulation.
Master the tools of MATLAB through hands-on examples The mathematical software MATLAB integrates computation, visualization, and programming to produce a powerful tool for a number of different tasks in mathematics. Focusing on the MATLAB toolboxes especially dedicated to science, finance, and engineering, MATLAB with Applications to Engineering, Physics and Finance explains how to perform complex mathematical tasks with relatively simple programs. This versatile book is accessible enough for novices and users with only a fundamental knowledge of MATLAB, yet covers many sophisticated concepts to make it helpful for experienced users as well. The author first introduces the basics of MATLAB, describing simple functions such as differentiation, integration, and plotting. He then addresses advanced topics, including programming, producing executables, publishing results directly from MATLAB programs, and creating graphical user interfaces. The text also presents examples of Simulink that highlight the advantages of using this software package for system modeling and simulation. The applications-dedicated chapters at the end of the book explore the use of MATLAB in digital signal processing, chemical and food engineering, astronomy, optics, financial derivatives, and much more.
Since the first edition of this book was published, S-PLUS has evolved markedly with new methods of analysis, new graphical procedures, and a convenient graphical user interface (GUI). Today, S-PLUS is the statistical software of choice for many applied researchers in disciplines ranging from finance to medicine. Combining the command line language and GUI of S-PLUS now makes this book even more suitable for inexperienced users, students, and anyone without the time, patience, or background needed to wade through the many more advanced manuals and texts on the market. The second edition of A Handbook of Statistical Analyses Using S-Plus has been completely revised to provide an outstanding introduction to the latest version of this powerful software system. Each chapter focuses on a particular statistical technique, applies it to one or more data sets, and shows how to generate the proposed analyses and graphics using S-PLUS. The author explains S-PLUS functions from both the Windows and command-line perspectives and clearly demonstrates how to switch between the two. This handbook provides the perfect vehicle for introducing the exciting possibilities S-PLUS, S-PLUS 2000, and S-PLUS 6 hold for data analysis. All of the data sets used in the text, along with script files giving the command language used in each chapter, are available for download from the Internet at http://www.iop.kcl.ac.uk/iop/Departments/BioComp/splus.shtml
Most books on linear systems for undergraduates cover discrete and continuous systems material together in a single volume. Such books also include topics in discrete and continuous filter design, and discrete and continuous state-space representations. However, with this magnitude of coverage, the student typically gets a little of both discrete and continuous linear systems but not enough of either. Minimal coverage of discrete linear systems material is acceptable provided that there is ample coverage of continuous linear systems. On the other hand, minimal coverage of continuous linear systems does no justice to either of the two areas. Under the best of circumstances, a student needs a solid background in both these subjects. Continuous linear systems and discrete linear systems are broad topics and each merit a single book devoted to the respective subject matter. The objective of this set of two volumes is to present the needed material for each at the undergraduate level, and present the required material using MATLAB (R) (The MathWorks Inc.).
Interactive Graphics for Data Analysis: Principles and Examples discusses exploratory data analysis (EDA) and how interactive graphical methods can help gain insights as well as generate new questions and hypotheses from datasets. Fundamentals of Interactive Statistical GraphicsThe first part of the book summarizes principles and methodology, demonstrating how the different graphical representations of variables of a dataset are effectively used in an interactive setting. The authors introduce the most important plots and their interactive controls. They also examine various types of data, relations between variables, and plot ensembles. Case Studies Illustrate the PrinciplesThe second section focuses on nine case studies. Each case study describes the background, lists the main goals of the analysis and the variables in the dataset, shows what further numerical procedures can add to the graphical analysis, and summarizes important findings. Wherever applicable, the authors also provide the numerical analysis for datasets found in Cox and Snell's landmark book. Understand How to Analyze Data through Graphical Means This full-color text shows that interactive graphical methods complement the traditional statistical toolbox to achieve more complete, easier to understand, and easier to interpret analyses.
This book is a highly accessible guide to being a project manager (PM), particularly a project manager working within an IT field. The role is set out with reference to required skills, competencies and responsibilities. Tools, methods and techniques for project managers are covered, including Agile approaches; risk, issue and change management processes; best practices for managing stakeholders and financial management.
Recentyearshaveseentheadventanddevelopmentofmanydevicesabletorecordand storeaneverincreasingamountofinformation. Thefastprogressofthesetechnologies is ubiquitousthroughoutall ?elds of science and applied contexts, ranging from medicine,biologyandlifesciences,toeconomicsandindustry. Thedataprovided bytheseinstrumentshavedifferentforms:2D-3Dimagesgeneratedbydiagnostic medicalscanners,computervisionorsatelliteremotesensing,microarraydataand genesets,integratedclinicalandadministrativedatafrompublichealthdatabases, realtimemonitoringdataofabio-marker,systemcontroldatasets. Allthesedata sharethecommoncharacteristicofbeingcomplexandoftenhighlydimensional. Theanalysisofcomplexandhighlydimensionaldataposesnewchallengesto thestatisticianandrequiresthedevelopmentofnovelmodelsandtechniques,fueling manyfascinatingandfastgrowingresearchareasofmodernstatistics. Anincomplete listincludes for example: functionaldata analysis, that deals with data having a functionalnature,suchascurvesandsurfaces;shapeanalysisofgeometricforms,that relatestoshapematchingandshaperecognition,appliedtocomputationalvisionand medicalimaging;datamining,thatstudiesalgorithmsfortheautomaticextraction ofinformationfromdata,elicitingrulesandpatternsoutofmassivedatasets;risk analysis,fortheevaluationofhealth,environmental,andengineeringrisks;graphical models,thatallowproblemsinvolvinglarge-scalemodelswithmillionsofrandom variableslinkedincomplexwaystobeapproached;reliabilityofcomplexsystems, whoseevaluationrequirestheuseofmanystatisticalandprobabilistictools;optimal designofcomputersimulationstoreplaceexpensiveandtimeconsumingphysical experiments. Thecontributionspublishedinthisvolumearetheresultofaselectionbasedonthe presentations(aboutonehundred)givenattheconference"S. Co. 2009:Complexdata modelingandcomputationallyintensivemethodsforestimationandprediction",held ? atthePolitecnicodiMilano. S. Co. isaforumforthediscussionofnewdevelopments ? September14-16,2009. Thatof2009isitssixthedition,the?rstonebeingheldinVenice in1999. VI Preface andapplicationsofstatisticalmethodsandcomputationaltechniquesforcomplexand highlydimensionaldatasets. Thebookisaddressedtostatisticiansworkingattheforefrontofthestatistical analysisofcomplexandhighlydimensionaldataandoffersawidevarietyofstatistical models,computerintensivemethodsandapplications. Wewishtothankallassociateeditorsandrefereesfortheirvaluablecontributions thatmadethisvolumepossible. MilanandVenice,May2010 PietroMantovan PiercesareSecchi Contents Space-timetextureanalysisinthermalinfraredimagingforclassi?cation ofRaynaud'sPhenomenon GrazianoAretusi,LaraFontanella,LuigiIppolitiandArcangeloMerla...1 Mixed-effectsmodellingofKevlar?brefailuretimesthroughBayesian non-parametrics RaffaeleArgiento,AlessandraGuglielmiandAntonioPievatolo...13 Space?llingandlocallyoptimaldesignsforGaussianUniversalKriging AlessandroBaldiAntogniniandMaroussaZagoraiou...27 Exploitation,integrationandstatisticalanalysisofthePublicHealth DatabaseandSTEMIArchiveintheLombardiaregion PietroBarbieri,Niccolo'Grieco,FrancescaIeva,AnnaMariaPaganoniand PiercesareSecchi...41 Bootstrapalgorithmsforvarianceestimationin PSsampling AlessandroBarbieroandFulviaMecatti...5 7 FastBayesianfunctionaldataanalysisofbasalbodytemperature JamesM. Ciera...71 AparametricMarkovchaintomodelage-andstate-dependentwear processes MassimilianoGiorgio,MaurizioGuidaandGianpaoloPulcini...85 CasestudiesinBayesiancomputationusingINLA SaraMartinoandHav ? ardRue...99 Agraphicalmodelsapproachforcomparinggenesets M. So?aMassa,MonicaChiognaandChiaraRomualdi...115 VIII Contents Predictivedensitiesandpredictionlimitsbasedonpredictivelikelihoods PaoloVidoni...123 Computer-intensiveconditionalinference G. AlastairYoungandThomasJ. DiCiccio...137 MonteCarlosimulationmethodsforreliabilityestimationandfailure prognostics EnricoZio...151 ListofContributors AlessandroBaldiAntognini JamesM. Ciera DepartmentofStatisticalSciences DepartmentofStatisticalSciences UniversityofBologna UniversityofPadova Bologna,Italy Padova,Italy ThomasJ. DiCiccio GrazianoAretusi DepartmentofSocialStatistics DepartmentofQuantitativeMethods CornellUniversity andEconomicTheory Ithaca,USA UniversityG. d'Annunzio Chieti-Pescara,Italy LaraFontanella DepartmentofQuantitativeMethods RaffaeleArgiento andEconomicTheory CNRIMATI UniversityG. d'Annunzio Milan,Italy Chieti-Pescara,Italy MassimilianoGiorgio PietroBarbieri DepartmentofAerospace Uf? cioQualita' andMechanicalEngineering CernuscosulNaviglio,Italy SecondUniversityofNaples Aversa(CE),Italy AlessandroBarbiero DepartmentofEconomics Niccolo'Grieco BusinessandStatistics A. O. NiguardaCa'Granda UniversityofMilan Milan,Italy Milan,Italy MaurizioGuida MonicaChiogna DepartmentofElectrical DepartmentofStatisticalSciences andInformationEngineering UniversityofPadova UniversityofSalerno Padova,Italy Fisciano(SA),Italy X ListofContributors AlessandraGuglielmi AntonioPievatolo DepartmentofMathematics CNRIMATI PolitecnicodiMilano Milan,Italy Milan,Italy GianpaoloPulcini alsoaf?liatedtoCNRIMATI,Milano IstitutoMotori NationalResearchCouncil(CNR) FrancescaIeva Naples,Italy MOX-DepartmentofMathematics PolitecnicodiMilano ChiaraRomualdi Milan,Italy DepartmentofBiology UniversityofPadova LuigiIppoliti Padova,Italy DepartmentofQuantitativeMethods andEconomicTheory H?avardRue UniversityG. d'Annunzio DepartmentofMathematicalSciences Chieti-Pescara,Italy NorwegianUniversityforScience andTechnology SaraMartino Trondheim,Norway DepartmentofMathematicalSciences NorwegianUniversityforScience PiercesareSecchi andTechnology MOX-DepartmentofMathematics Trondheim,Norway PolitecnicodiMilano Milan,Italy M. So?aMassa DepartmentofStatisticalSciences PaoloVidoni UniversityofPadova DepartmentofStatistics Padova,Italy UniversityofUdine Udine,Italy FulviaMecatti DepartmentofStatistics G. |
![]() ![]() You may like...
Keys to the Qur'an - A commentary on…
Shaykh Fadhlalla Haeri
Hardcover
R1,171
Discovery Miles 11 710
A Sufi Commentary on the Qur'an - Volume…
'Abd Al-Razzaq Al-Kashani
Paperback
Redemption - 2017 Tales from the Writers…
Bernie Dowling, Vera M Murray, …
Hardcover
R833
Discovery Miles 8 330
|