![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Computer software packages > Other software packages
This book presents the statistical analysis of compositional data sets, i.e., data in percentages, proportions, concentrations, etc. The subject is covered from its grounding principles to the practical use in descriptive exploratory analysis, robust linear models and advanced multivariate statistical methods, including zeros and missing values, and paying special attention to data visualization and model display issues. Many illustrated examples and code chunks guide the reader into their modeling and interpretation. And, though the book primarily serves as a reference guide for the R package "compositions," it is also a general introductory text on Compositional Data Analysis. Awareness of their special characteristics spread in the Geosciences in the early sixties, but a strategy for properly dealing with them was not available until the works of Aitchison in the eighties. Since then, research has expanded our understanding of their theoretical principles and the potentials and limitations of their interpretation. This is the first comprehensive textbook addressing these issues, as well as their practical implications with regard to software. The book is intended for scientists interested in statistically analyzing their compositional data. The subject enjoys relatively broad awareness in the geosciences and environmental sciences, but the spectrum of recent applications also covers areas like medicine, official statistics, and economics. Readers should be familiar with basic univariate and multivariate statistics. Knowledge of R is recommended but not required, as the book is self-contained.
Intended for both researchers and practitioners, this book will be a valuable resource for studying and applying recent robust statistical methods. It contains up-to-date research results in the theory of robust statistics Treats computational aspects and algorithms and shows interesting and new applications.
Many of the commonly used methods for modeling and fitting psychophysical data are special cases of statistical procedures of great power and generality, notably the Generalized Linear Model (GLM). This book illustrates how to fit data from a variety of psychophysical paradigms using modern statistical methods and the statistical language R.The paradigms include signal detection theory, psychometric function fitting, classification images and more. In two chapters, recently developed methods for scaling appearance, maximum likelihood difference scaling and maximum likelihood conjoint measurement are examined.The authors also consider the applicationof mixed-effects models to psychophysical data. R is an open-source programming language that is widely used by statisticians and is seeing enormous growth in its application to data in all fields. It is interactive, containing many powerful facilities for optimization, model evaluation, model selection, and graphical display of data. The reader who fits data in R can readily make use of these methods. The researcher who uses R to fit and model his data has access to most recently developed statistical methods. This book does not assume that the reader is familiar with R,
and a little experience with any programming language is all that
is needed to appreciate this book. There are large numbers of
examples of R in the text and the source code for all examples is
available in an R package MPDiR available through R. Laurence T. Maloney is Professor of Psychology and Neural Science at New York University. His research focusses on applications of mathematical models to perception, motor control and decision making."
Every advance in computer architecture and software tempts statisticians to tackle numerically harder problems. To do so intelligently requires a good working knowledge of numerical analysis. This book equips students to craft their own software and to understand the advantages and disadvantages of different numerical methods. Issues of numerical stability, accurate approximation, computational complexity, and mathematical modeling share the limelight in a broad yet rigorous overview of those parts of numerical analysis most relevant to statisticians. In this second edition, the material on optimization has been completely rewritten. There is now an entire chapter on the MM algorithm in addition to more comprehensive treatments of constrained optimization, penalty and barrier methods, and model selection via the lasso. There is also new material on the Cholesky decomposition, Gram-Schmidt orthogonalization, the QR decomposition, the singular value decomposition, and reproducing kernel Hilbert spaces. The discussions of the bootstrap, permutation testing, independent Monte Carlo, and hidden Markov chains are updated, and a new chapter on advanced MCMC topics introduces students to Markov random fields, reversible jump MCMC, and convergence analysis in Gibbs sampling. Numerical Analysis for Statisticians can serve as a graduate text for a course surveying computational statistics. With a careful selection of topics and appropriate supplementation, it can be used at the undergraduate level. It contains enough material for a graduate course on optimization theory. Because many chapters are nearly self-contained, professional statisticians will also find the book useful as a reference.
Biological and biomedical studies have entered a new era over the past two decades thanks to the wide use of mathematical models and computational approaches. A booming of computational biology, which sheerly was a theoretician's fantasy twenty years ago, has become a reality. Obsession with computational biology and theoretical approaches is evidenced in articles hailing the arrival of what are va- ously called quantitative biology, bioinformatics, theoretical biology, and systems biology. New technologies and data resources in genetics, such as the International HapMap project, enable large-scale studies, such as genome-wide association st- ies, which could potentially identify most common genetic variants as well as rare variants of the human DNA that may alter individual's susceptibility to disease and the response to medical treatment. Meanwhile the multi-electrode recording from behaving animals makes it feasible to control the animal mental activity, which could potentially lead to the development of useful brain-machine interfaces. - bracing the sheer volume of genetic, genomic, and other type of data, an essential approach is, ?rst of all, to avoid drowning the true signal in the data. It has been witnessed that theoretical approach to biology has emerged as a powerful and st- ulating research paradigm in biological studies, which in turn leads to a new - search paradigm in mathematics, physics, and computer science and moves forward with the interplays among experimental studies and outcomes, simulation studies, and theoretical investigations.
Rcpp is the glue that binds the power and versatility of R with the speed and efficiency of C++. With Rcpp, the transfer of data between R and C++ is nearly seamless, and high-performance statistical computing is finally accessible to most R users. Rcpp should be part of every statistician's toolbox. -- Michael Braun, MIT Sloan School of Management "Seamless R and C++ integration with Rcpp" is simply a wonderful book. For anyone who uses C/C++ and R, it is an indispensable resource. The writing is outstanding. A huge bonus is the section on applications. This section covers the matrix packages Armadillo and Eigen and the GNU Scientific Library as well as RInside which enables you to use R inside C++. These applications are what most of us need to know to really do scientific programming with R and C++. I love this book. -- Robert McCulloch, University of Chicago Booth School of Business Rcpp is now considered an essential package for anybody doing serious computational research using R. Dirk's book is an excellent companion and takes the reader from a gentle introduction to more advanced applications via numerous examples and efficiency enhancing gems. The book is packed with all you might have ever wanted to know about Rcpp, its cousins (RcppArmadillo, RcppEigen .etc.), modules, package development and sugar. Overall, this book is a must-have on your shelf. -- Sanjog Misra, UCLA Anderson School of Management The Rcpp package represents a major leap forward for scientific computations with R. With very few lines of C++ code, one has R's data structures readily at hand for further computations in C++. Hence, high-level numerical programming can be made in C++ almost as easily as in R, but often with a substantial speed gain. Dirk is a crucial person in these developments, and his book takes the reader from the first fragile steps on to using the full Rcpp machinery. A very recommended book -- Soren Hojsgaard," "Department of Mathematical Sciences, Aalborg University, Denmark "Seamless R and C ++ Integration with Rcpp" provides the first comprehensive introduction to Rcpp. Rcpp has become the most widely-used language extension for R, and is deployed by over one-hundred different CRAN and BioConductor packages. Rcpp permits users to pass scalars, vectors, matrices, list or entire R objects back and forth between R and C++ with ease. This brings the depth of the R analysis framework together with the power, speed, and efficiency of C++. Dirk Eddelbuettel has been a contributor to CRAN for over a decade and maintains around twenty packages. He is the Debian/Ubuntu maintainer for R and other quantitative software, edits the CRAN Task Views for Finance and High-Performance Computing, is a co-founder of the annual R/Finance conference, and an editor of the Journal of Statistical Software. He holds a Ph.D. in Mathematical Economics from EHESS (Paris), and works in Chicago as a Senior Quantitative Analyst. "
Accessible to a general audience with some background in statistics and computing Many examples and extended case studies Illustrations using R and Rstudio A true blend of statistics and computer science -- not just a grab bag of topics from each
Dealing with methods for sampling from posterior distributions and how to compute posterior quantities of interest using Markov chain Monte Carlo (MCMC) samples, this book addresses such topics as improving simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, highest posterior density interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. The authors also discuss model comparisons, including both nested and non-nested models, marginal likelihood methods, ratios of normalizing constants, Bayes factors, the Savage-Dickey density ratio, Stochastic Search Variable Selection, Bayesian Model Averaging, the reverse jump algorithm, and model adequacy using predictive and latent residual approaches. The book presents an equal mixture of theory and applications involving real data, and is intended as a graduate textbook or a reference book for a one-semester course at the advanced masters or Ph.D. level. It will also serve as a useful reference for applied or theoretical researchers as well as practitioners.
Algorithms for Computer Algebra is the first comprehensive textbook to be published on the topic of computational symbolic mathematics. The book first develops the foundational material from modern algebra that is required for subsequent topics. It then presents a thorough development of modern computational algorithms for such problems as multivariate polynomial arithmetic and greatest common divisor calculations, factorization of multivariate polynomials, symbolic solution of linear and polynomial systems of equations, and analytic integration of elementary functions. Numerous examples are integrated into the text as an aid to understanding the mathematical development. The algorithms developed for each topic are presented in a Pascal-like computer language. An extensive set of exercises is presented at the end of each chapter. Algorithms for Computer Algebra is suitable for use as a textbook for a course on algebraic algorithms at the third-year, fourth-year, or graduate level. Although the mathematical development uses concepts from modern algebra, the book is self-contained in the sense that a one-term undergraduate course introducing students to rings and fields is the only prerequisite assumed. The book also serves well as a supplementary textbook for a traditional modern algebra course, by presenting concrete applications to motivate the understanding of the theory of rings and fields.
Without question, statistics is one of the most challenging courses for students in the social and behavioral sciences. Enrolling in their first statistics course, students are often apprehensive or extremely anxious toward the subject matter. And while IBM SPSS is one of the more easy-to-use statistical software programs available, for anxious students who realize they not only have to learn statistics but also new software, the task can seem insurmountable. Keenly aware of students' anxiety with statistics (and the fact that this anxiety can affect performance), Ronald D. Yockey has written SPSS Demystified: A Simple Guide and Reference, now in its fourth edition. Through a comprehensive, step-by-step approach, this text is consistently and specifically designed to both alleviate anxiety toward the subject matter and build a successful experience analyzing data in SPSS. Topics covered in the text are appropriate for most introductory and intermediate statistics and research methods courses. Key features of the text: Step-by-step instruction and screenshots Designed to be hands-on with the user performing the analyses alongside on their computer as they read through each chapter Call-out boxes provided, highlighting important information as appropriate SPSS output explained, with written results provided using the popular, widely recognized APA format End-of-chapter exercises included, allowing for additional practice SPSS datasets available on the publisher's website New to the Fourth Edition: Fully updated to SPSS 28 Updated screenshots in full color to reflect changes in SPSS software system (version 28) Exercises updated with up-to-date examples Exact p-values provided (consist with APA recommendations)
This pocket guide explains the content and the practical use of ISO 21500 - Guidance on project management, the latest international standard for project management, and the first of a family of ISO standards for project, portfolio and program management. ISO 21500 is meant for senior managers and project sponsors to better understand project management and to properly support projects, for project managers and their team members to have a reference for comparing their projects to others and it can be used as a basis for the development of national standards. This pocket guide provides a quick introduction as well as a structured overview of this guidance and deals with the key issues within project management: * Roles and responsibilities * Balancing the project constraints * Competencies of project personnel All ISO 21500 subject groups (themes) are explained: Integration, Stakeholder, Scope, Resource, Time, Cost, Risk, Quality, Procurement and Communication. A separate chapter explains the comparison between, ISO 21500 and PMBOK(R) Guide PRINCE2, Agile, Lean, Six Sigma and other methods, practices and models. Finally, it provides a high level description of how ISO 21500 can be applied in practice using a generic project life cycle. Proper application of this new globally accepted project management guideline will support organizations and individuals in growing their project management maturity consistently to a professional level.
Bayesian Networks in R with Applications in Systems Biology is unique as it introduces the reader to the essential concepts in Bayesian network modeling and inference in conjunction with examples in the open-source statistical environment R. The level of sophistication is also gradually increased across the chapters with exercises and solutions for enhanced understanding for hands-on experimentation of the theory and concepts. The application focuses on systems biology with emphasis on modeling pathways and signaling mechanisms from high-throughput molecular data. Bayesian networks have proven to be especially useful abstractions in this regard. Their usefulness is especially exemplified by their ability to discover new associations in addition to validating known ones across the molecules of interest. It is also expected that the prevalence of publicly available high-throughput biological data sets may encourage the audience to explore investigating novel paradigms using the approaches presented in the book.
"MATLAB for Neuroscientists" serves as the only complete study manual and teaching resource for MATLAB, the globally accepted standard for scientific computing, in the neurosciences and psychology. This unique introduction can be used to learn the entire empirical and experimental process (including stimulus generation, experimental control, data collection, data analysis, modeling, and more), and the 2nd Edition continues to ensure that a wide variety of computational problems can be addressed in a single programming environment. This updated edition features additional material on the
creation of visual stimuli, advanced psychophysics, analysis of LFP
data, choice probabilities, synchrony, and advanced spectral
analysis. Users at a variety of levels-advanced undergraduates,
beginning graduate students, and researchers looking to modernize
their skills-will learn to design and implement their own
analytical tools, and gain the fluency required to meet the
computational needs of neuroscience practitioners.
Pro SharePoint 2013 Branding and Responsive Web Development is the definitive reference on the technologies, tools, and techniques needed for building responsive websites and applications with SharePoint 2013. The book focuses on solutions that provide the best browser experience for the myriad of devices, browsers, and screen orientations and resolutions. Web technology has changed considerably in the past few years. Microsoft has embraced the new generation of open standards represented by HTML5 and JavaScript, and these changes are represented in a fundamental shift in how SharePoint 2013 supports web content management and publishing. Authors Eric Overfield, Oscar Medina, Kanwal Khipple, and Rita Zhang join forces to dive into the new features and capabilities provided by SharePoint 2013 and combine them with the latest techniques in responsive web design and development to demonstrate how to build modern and progressive websites and applications. Pro SharePoint 2013 Branding and Responsive Web Development covers the following technologies: SharePoint 2013 Server Edition Office 365 SharePoint Online Expression Blend 2013 Napa Tools for Office and SharePoint Development Visual Studio 2012 HTML5 and CSS3 JavaScript, JQuery, JQuery UI, Modernizr, and the Bootstrap Framework SharePoint 2013 Client Object Model
This edited survey book consists of 20 chapters showing application of Clifford algebra in quantum mechanics, field theory, spinor calculations, projective geometry, Hypercomplex algebra, function theory and crystallography. Many examples of computations performed with a variety of readily available software programs are presented in detail.
This is the first book to show the capabilities of Microsoft Excel to teach biological and life sciences statistics effectively. It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical science problems. If understanding statistics isn't your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in science courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2007 for Biological and Life Sciences Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their courses and work. Each chapter explains statistical formulas and directs the reader to use Excel commands to solve specific, easy-to-understand science problems. Practice problems are provided at the end of each chapter with their solutions in an appendix. Separately, there is a full Practice Test (with answers in an Appendix) that allows readers to test what they have learned.
S is a high-level language for manipulating, analysing and displaying data. It forms the basis of two highly acclaimed and widely used data analysis software systems, the commercial S-PLUS(r) and the Open Source R. This book provides an in-depth guide to writing software in the S language under either or both of those systems. It is intended for readers who have some acquaintance with the S language and want to know how to use it more effectively, for example to build re-usable tools for streamlining routine data analysis or to implement new statistical methods. One of the outstanding strengths of the S language is the ease with which it can be extended by users. S is a functional language, and functions written by users are first-class objects treated in the same way as functions provided by the system. S code is eminently readable and so a good way to document precisely what algorithms were used, and as much of the implementations are themselves written in S, they can be studied as models and to understand their subtleties. The current implementations also provide easy ways for S functions to call compiled code written in C, Fortran and similar languages; this is documented here in depth. Increasingly S is being used for statistical or graphical analysis within larger software systems or for whole vertical-market applications. The interface facilities are most developed on Windows(r) and these are covered with worked examples. The authors have written the widely used Modern Applied Statistics with S-PLUS, now in its third edition, and several software libraries that enhance S-PLUS and R; these and the examples used in both books are available on the Internet. Dr. W.N. Venables is a senior Statistician with the CSIRO/CMIS Environmetrics Project in Australia, having been at the Department of Statistics, University of Adelaide for many years previously. Professor B.D. Ripley holds the Chair of Applied Statistics at the University of Oxford, and is the author of four other books on spatial statistics, simulation, pattern recognition and neural networks. Both authors are known and respected throughout the international S and R communities, for their books, workshops, short courses, freely available software and through their extensive contributions to the S-news and R mailing lists.
Note: This pocket book is available in several languages: English, German, French, Spanish, Dutch. This pocket guide is based on the PMBOK(R) Guide Fifth Edition. It contains a summary of the PMBOK(R) Guide, to provide a quick introduction as well as a structured overview of this framework for project management. This pocket guide deals with the key issues and themes within project management and the PMBOK(R) Guide as follows: - Key terms and definitions in the project management profession - A short overview of the activities of PMI Inc., the organization and its standards: PMBOK(R) Guide, Standard for Project Portfolio Management, Standard for Program Management and other standards. - The essentials of the Project Lifecycle and Organization. - What are the key project management knowledge areas and processes? Main target Group for this pocket guide is anyone with an interest in understanding the PMBOK(R) Guide framework or a systematic approach for project management. The book is also very useful for members of a project management team in a project environment using the PMBOK(R) Guide as a shared reference. A complete but concise description of the PMBOK(R) Guide, for anyone involved in projects or project management, for only 15,95!
"Fast Compact Algorithms and Software for Spline Smoothing" investigates algorithmic alternatives for computing cubic smoothing splines when the amount of smoothing is determined automatically by minimizing the generalized cross-validation score. These algorithms are based on Cholesky factorization, QR factorization, or the fast Fourier transform. All algorithms are implemented in MATLAB and are compared based on speed, memory use, and accuracy. An overall best algorithm is identified, which allows very large data sets to be processed quickly on a personal computer.
A t the terminal seated, the answering tone: pond and temple bell. ODAY as in the past, statistical method is profoundly affected by T resources for numerical calculation and visual display. The main line of development of statistical methodology during the first half of this century was conditioned by, and attuned to, the mechanical desk calculator. Now statisticians may use electronic computers of various kinds in various modes, and the character of statistical science has changed accordingly. Some, but not all, modes of modern computation have a flexibility and immediacy reminiscent of the desk calculator. They preserve the virtues of the desk calculator, while immensely exceeding its scope. Prominent among these is the computer language and conversational computing system known by the initials APL. This book is addressed to statisticians. Its first aim is to interest them in using APL in their work-for statistical analysis of data, for numerical support of theoretical studies, for simulation of random processes. In Part A the language is described and illustrated with short examples of statistical calculations. Part B, presenting some more extended examples of statistical analysis of data, has also the further aim of suggesting the interplay of computing and theory that must surely henceforth be typical of the develop ment of statistical science."
Grimmett, Geoffrey: Percolation and disordered systems.- Kesten, Harry: Aspects of first passage percolation. "
Keith M. Ponting Speech Research Unit, DERA Malvern St. Andrew's Road, Great Malvern, Worcs. WR14 3PS, UK email: ponting
Accompanying the book, as with all TELOS sponsored publications, is an electronic component. In this case it is a DOS-Diskette produced by one of the coauthors, Paul Wellin. This diskette consists of "Mathematica "notebooks and packages which contain the codes for all examples and exercises in the book, as well as additional materials intended to extend many ideas covered in the text. It is of great value to teachers, students, and others using this book to learn how to effectively program with "Mathematica" .
Non-uniform random variate generation is an established research area in the intersection of mathematics, statistics and computer science. Although random variate generation with popular standard distributions have become part of every course on discrete event simulation and on Monte Carlo methods, the recent concept of universal (also called automatic or black-box) random variate generation can only be found dispersed in literature. This new concept has great practical advantages that are little known to most simulation practitioners. Being unique in its overall organization the book covers not only the mathematical and statistical theory, but also deals with the implementation of such methods. All algorithms introduced in the book are designed for practical use in simulation and have been coded and made available by the authors. Examples of possible applications of the presented algorithms (including option pricing, VaR and Bayesian statistics) are presented at the end of the book.
This book deals with the performance analysis of closed queueing networks with general processing times and finite buffer spaces. It offers a detailed introduction to the problem and a comprehensive literature review. Two approaches to the performance of closed queueing networks are presented. One is an approximate decomposition approach, while the second is the first exact approach for finite-capacity networks with general processing times. In this Markov chain approach, queueing networks are analyzed by modeling the entire system as one Markov chain. As this approach is exact, it is well-suited both as a reference quantity for approximate procedures and as extension to other queueing networks. Moreover, for the first time, the exact distribution of the time between processing starts is provided. |
You may like...
Stars of Classical
Various Artists, Emmerich Kalman/Franz Lehar/Johann Strauss II, …
CD
Handbook of Advances in Culture and…
Michele J. Gelfand, Chi-yue Chiu, …
Hardcover
R3,932
Discovery Miles 39 320
The Politics of Collaborative Public…
Robert Agranoff, Aleksey Kolpakov
Hardcover
R1,776
Discovery Miles 17 760
Tchaikovsky: Symphony 6…
Pyotr Ilyich Tchaikovsky, Herbert Von Karajan, …
CD
R137
Discovery Miles 1 370
Interrupting White Privilege - Catholic…
Alexander Mikulich, Laurie M. Cassidy
Paperback
|