![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Computer software packages > Other software packages
Pro SharePoint 2013 Administration is a practical guide to SharePoint 2013 for intermediate to advanced SharePoint administrators and power users, covering the out-of-the-box feature set and capabilities of Microsoft's collaboration and business productivity platform. SharePoint 2013 is an incredibly complex product, with many moving parts, new features, best practices, and "gotchas." Author Rob Garrett distills SharePoint's portfolio of features, capabilities, and utilities into an in-depth professional guide-with no fluff and copious advice-that is designed from scratch to be the manual Microsoft never wrote. Starting with a detailed deployment and initial configuration walkthrough, the book covers all major feature areas, including document management, social computing, metadata management, and administration. You'll also learn about planning for capacity, backup administration and disaster recovery, business intelligence, monitoring, and more. Unlike other books, Pro SharePoint 2013 Administration covers all elements of the product, but has a specific emphasis on features new and enhanced in the 2013 release. Pro SharePoint 2013 Administration is the only book you'll need as you set out to deploy and administer SharePoint 2013.
Nonlinear physics continues to be an area of dynamic modern research, with applications to physics, engineering, chemistry, mathematics, computer science, biology, medicine and economics. In this text extensive use is made of the Mathematica computer algebra system. No prior knowledge of Mathematica or programming is assumed. This book includes 33 experimental activities that are designed to deepen and broaden the reader's understanding of nonlinear physics. These activities are correlated with Part I, the theoretical framework of the text.
Microsoft Windows 8.1 and Windows Server 2012 R2 are designed to be the best performing operating systems to date, but even the best systems can be overwhelmed with load and/or plagued with poorly performing code. Windows Performance Analysis Field Guide gives you a practical field guide approach to performance monitoring and analysis from experts who do this work every day. Think of this book as your own guide to "What would Microsoft support do?" when you have a Windows performance issue. Author Clint Huffman, a Microsoft veteran of over fifteen years, shows you how to identify and alleviate problems with the computer resources of disk, memory, processor, and network. You will learn to use performance counters as the initial indicators, then use various tools to "dig in" to the problem, as well as how to capture and analyze boot performance problems.
Pro Exchange Server 2013 Administration is your best-in-class companion for gaining a deep, thorough understanding of Microsoft's powerful enterprise collaboration and communications server. Author Kurt Dillard is at your side at you administer every facet of Exchange Server 2013, revealing tips, tricks, and little known facts that will make your administration life simpler and more effective. Along with discovering what's new in Exchange Server 2013, this well-paced, deeply engaging tutorial covers deployment, for both upgraders and migrators as well as for organizations entirely new to the Exchange platform. You'll gain a powerful understanding of how all of the major components of Exchange fit together, from email and other messaging to voice plans and unified communications. You will also step through in-depth configuration examples with an eye toward creating scalable, reliable, and secure installations. Additionally, you'll learn what tools and techniques to use when things go pear-shaped with an authoritative guide to troubleshooting. With Pro Exchange Server 2013 Administration, you will: * Get a thorough understanding of Exchange and its components.* Understand how to configure your Exchange deployment for scalability, reliability, efficiency and security. * Walk through real world troubleshooting examples. What you'll learn * A comprehensive set of best practices for administering Exchange Server 2013 on a daily basis. * A thorough understanding of new features. * How to design and deploy new Exchange 2013 servers and upgrade existing Exchange servers to Exchange 2013. * Learn best practices for high availability and disaster recovery. * Understand the differences and similarities between Exchange on-premise and Exchange Online. Who this book is for Pro Exchange Server 2013 Administration is intended for mail system administrators and architects who design, deploy, and support messaging infrastructures that include Microsoft Exchange.
Post-Optimal Analysis in Linear Semi-Infinite Optimization examines the following topics in regards to linear semi-infinite optimization: modeling uncertainty, qualitative stability analysis, quantitative stability analysis and sensitivity analysis. Linear semi-infinite optimization (LSIO) deals with linear optimization problems where the dimension of the decision space or the number of constraints is infinite. The authors compare the post-optimal analysis with alternative approaches to uncertain LSIO problems and provide readers with criteria to choose the best way to model a given uncertain LSIO problem depending on the nature and quality of the data along with the available software. This work also contains open problems which readers will find intriguing a challenging. Post-Optimal Analysis in Linear Semi-Infinite Optimization is aimed toward researchers, graduate and post-graduate students of mathematics interested in optimization, parametric optimization and related topics.
Sampling consists of selection, acquisition, and quantification of a part of the population. While selection and acquisition apply to physical sampling units of the population, quantification pertains only to the variable of interest, which is a particular characteristic of the sampling units. A sampling procedure is expected to provide a sample that is representative with respect to some specified criteria. Composite sampling, under idealized conditions, incurs no loss of information for estimating the population means. But an important limitation to the method has been the loss of information on individual sample values, such as, the extremely large value. In many of the situations where individual sample values are of interest or concern, composite sampling methods can be suitably modified to retrieve the information on individual sample values that may be lost due to compositing. This book presents statistical solutions to issues that arise in the context of applications of composite sampling.
This pocket guide explains the content and the practical use of ISO 21500 - Guidance on project management, the latest international standard for project management, and the first of a family of ISO standards for project, portfolio and program management. ISO 21500 is meant for senior managers and project sponsors to better understand project management and to properly support projects, for project managers and their team members to have a reference for comparing their projects to others and it can be used as a basis for the development of national standards. This pocket guide provides a quick introduction as well as a structured overview of this guidance and deals with the key issues within project management: * Roles and responsibilities * Balancing the project constraints * Competencies of project personnel All ISO 21500 subject groups (themes) are explained: Integration, Stakeholder, Scope, Resource, Time, Cost, Risk, Quality, Procurement and Communication. A separate chapter explains the comparison between, ISO 21500 and PMBOK(R) Guide PRINCE2, Agile, Lean, Six Sigma and other methods, practices and models. Finally, it provides a high level description of how ISO 21500 can be applied in practice using a generic project life cycle. Proper application of this new globally accepted project management guideline will support organizations and individuals in growing their project management maturity consistently to a professional level.
This book presents methods for computing correlation equations. All the topics treated hefe are eluci dated in terms of concrete examples, which have been chosen, for the most part, from the Held of analysis of the mechanical properties of steel, wood, and other materials. A necessary prerequisite for any study of correlation equations is so me knowledge of the moments of random variables. In the Appendix, there is provided a brief treatment of moments, as well as a discussion of the simplest methods of computing them. We have paid particular attention in this book to the techniques of computing correlation equations, and to the use of tables for alleviating the computationalload. The mathematical bases of the methods used in setting up correlation equations are expounded in the books cited at the end of this volume. A. M. December 1965 PIe ase note that the abbreviation 19 is used in this book to designate the logarithm to base ten, Note further that the comma has been retained as the decimal point in tabular material."
This proposed text appears to be a good introduction to evolutionary computation for use in applied statistics research. The authors draw from a vast base of knowledge about the current literature in both the design of evolutionary algorithms and statistical techniques. Modern statistical research is on the threshold of solving increasingly complex problems in high dimensions, and the generalization of its methodology to parameters whose estimators do not follow mathematically simple distributions is underway. Many of these challenges involve optimizing functions for which analytic solutions are infeasible. Evolutionary algorithms represent a powerful and easily understood means of approximating the optimum value in a variety of settings. The proposed text seeks to guide readers through the crucial issues of optimization problems in statistical settings and the implementation of tailored methods (including both stand-alone evolutionary algorithms and hybrid crosses of these procedures with standard statistical algorithms like Metropolis-Hastings) in a variety of applications. This book would serve as an excellent reference work for statistical researchers at an advanced graduate level or beyond, particularly those with a strong background in computer science.
This book evolved from lectures, courses and workshops on missing data and small-area estimation that I presented during my tenure as the ?rst C- pion Fellow (2000-2002). For the Fellowship I proposed these two topics as areas in which the academic statistics could contribute to the development of government statistics, in exchange for access to the operational details and background that would inform the direction and sharpen the focus of a- demic research. After a few years of involvement, I have come to realise that the separation of 'academic' and 'industrial' statistics is not well suited to either party, and their integration is the key to progress in both branches. Most of the work on this monograph was done while I was a visiting l- turer at Massey University, Palmerston North, New Zealand. The hospitality and stimulating academic environment of their Institute of Information S- ence and Technology is gratefully acknowledged. I could not name all those who commented on my lecture notes and on the presentations themselves; apart from them, I want to thank the organisers and silent attendees of all the events, and, with a modicum of reluctance, the 'grey ?gures' who kept inquiring whether I was any nearer the completion of whatever stage I had been foolish enough to attach a date.
This is the first book to show the capabilities of Microsoft Excel to teach biological and life sciences statistics effectively. It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical science problems. If understanding statistics isn't your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in science courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2007 for Biological and Life Sciences Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their courses and work. Each chapter explains statistical formulas and directs the reader to use Excel commands to solve specific, easy-to-understand science problems. Practice problems are provided at the end of each chapter with their solutions in an appendix. Separately, there is a full Practice Test (with answers in an Appendix) that allows readers to test what they have learned.
Intended for both researchers and practitioners, this book will be a valuable resource for studying and applying recent robust statistical methods. It contains up-to-date research results in the theory of robust statistics Treats computational aspects and algorithms and shows interesting and new applications.
Looking back at the years that have passed since the realization of the very first electronic, multi-purpose computers, one observes a tremendous growth in hardware and software performance. Today, researchers and engi neers have access to computing power and software that can solve numerical problems which are not fully understood in terms of existing mathemati cal theory. Thus, computational sciences must in many respects be viewed as experimental disciplines. As a consequence, there is a demand for high quality, flexible software that allows, and even encourages, experimentation with alternative numerical strategies and mathematical models. Extensibil ity is then a key issue; the software must provide an efficient environment for incorporation of new methods and models that will be required in fu ture problem scenarios. The development of such kind of flexible software is a challenging and expensive task. One way to achieve these goals is to in vest much work in the design and implementation of generic software tools which can be used in a wide range of application fields. In order to provide a forum where researchers could present and discuss their contributions to the described development, an International Work shop on Modern Software Tools for Scientific Computing was arranged in Oslo, Norway, September 16-18, 1996. This workshop, informally referred to as Sci Tools '96, was a collaboration between SINTEF Applied Mathe matics and the Departments of Informatics and Mathematics at the Uni versity of Oslo."
Separation of signal from noise is the most fundamental problem in data analysis, arising in such fields as: signal processing, econometrics, actuarial science, and geostatistics. This book introduces the local regression method in univariate and multivariate settings, with extensions to local likelihood and density estimation. Practical information is also included on how to implement these methods in the programs S-PLUS and LOCFIT.
The advent of fast and sophisticated computer graphics has brought dynamic and interactive images under the control of professional mathematicians and mathematics teachers. This volume in the NATO Special Programme on Advanced Educational Technology takes a comprehensive and critical look at how the computer can support the use of visual images in mathematical problem solving. The contributions are written by researchers and teachers from a variety of disciplines including computer science, mathematics, mathematics education, psychology, and design. Some focus on the use of external visual images and others on the development of individual mental imagery. The book is the first collected volume in a research area that is developing rapidly, and the authors pose some challenging new questions.
This book deals with the performance analysis of closed queueing networks with general processing times and finite buffer spaces. It offers a detailed introduction to the problem and a comprehensive literature review. Two approaches to the performance of closed queueing networks are presented. One is an approximate decomposition approach, while the second is the first exact approach for finite-capacity networks with general processing times. In this Markov chain approach, queueing networks are analyzed by modeling the entire system as one Markov chain. As this approach is exact, it is well-suited both as a reference quantity for approximate procedures and as extension to other queueing networks. Moreover, for the first time, the exact distribution of the time between processing starts is provided.
Developments in both computer hardware and Perhaps the greatest impact has been felt by the software over the decades have fundamentally education community. Today, it is nearly changed the way people solve problems. impossible to find a college or university that has Technical professionals have greatly benefited not introduced mathematical computation in from new tools and techniques that have allowed some form, into the curriculum. Students now them to be more efficient, accurate, and creative have regular access to the amount of in their work. computational power that were available to a very exclusive set of researchers five years ago. This Maple V and the new generation of mathematical has produced tremendous pedagogical computation systems have the potential of challenges and opportunities. having the same kind of revolutionary impact as high-level general purpose programming Comparisons to the calculator revolution of the languages (e.g. FORTRAN, BASIC, C), 70's are inescapable. Calculators have application software (e.g. spreadsheets, extended the average person's ability to solve Computer Aided Design - CAD), and even common problems more efficiently, and calculators have had. Maple V has amplified our arguably, in better ways. Today, one needs at mathematical abilities: we can solve more least a calculator to deal with standard problems problems more accurately, and more often. In in life -budgets, mortgages, gas mileage, etc. specific disciplines, this amplification has taken For business people or professionals, the excitingly different forms.
Dealing with methods for sampling from posterior distributions and how to compute posterior quantities of interest using Markov chain Monte Carlo (MCMC) samples, this book addresses such topics as improving simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, highest posterior density interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. The authors also discuss model comparisons, including both nested and non-nested models, marginal likelihood methods, ratios of normalizing constants, Bayes factors, the Savage-Dickey density ratio, Stochastic Search Variable Selection, Bayesian Model Averaging, the reverse jump algorithm, and model adequacy using predictive and latent residual approaches. The book presents an equal mixture of theory and applications involving real data, and is intended as a graduate textbook or a reference book for a one-semester course at the advanced masters or Ph.D. level. It will also serve as a useful reference for applied or theoretical researchers as well as practitioners.
The intensive use of automatic data acquisition system and the use of cloud computing for process monitoring have led to an increased occurrence of industrial processes that utilize statistical process control and capability analysis. These analyses are performed almost exclusively with multivariate methodologies. The aim of this Brief is to present the most important MSQC techniques developed in R language. The book is divided into two parts. The first part contains the basic R elements, an introduction to statistical procedures, and the main aspects related to Statistical Quality Control (SQC). The second part covers the construction of multivariate control charts, the calculation of Multivariate Capability Indices.
This Handbook gives a comprehensive snapshot of a field at the intersection of mathematics and computer science with applications in physics, engineering and education. Reviews 67 software systems and offers 100 pages on applications in physics, mathematics, computer science, engineering chemistry and education.
Automatic Graph Drawing is concerned with the layout of relational structures as they occur in Computer Science (Data Base Design, Data Mining, Web Mining), Bioinformatics (Metabolic Networks), Businessinformatics (Organization Diagrams, Event Driven Process Chains), or the Social Sciences (Social Networks). In mathematical terms, such relational structures are modeled as graphs or more general objects such as hypergraphs, clustered graphs, or compound graphs. A variety of layout algorithms that are based on graph theoretical foundations have been developed in the last two decades and implemented in software systems. After an introduction to the subject area and a concise treatment of the technical foundations for the subsequent chapters, this book features 14 chapters on state-of-the-art graph drawing software systems, ranging from general "tool boxes'' to customized software for various applications. These chapters are written by leading experts, they follow a uniform scheme and can be read independently from each other.
Every advance in computer architecture and software tempts statisticians to tackle numerically harder problems. To do so intelligently requires a good working knowledge of numerical analysis. This book equips students to craft their own software and to understand the advantages and disadvantages of different numerical methods. Issues of numerical stability, accurate approximation, computational complexity, and mathematical modeling share the limelight in a broad yet rigorous overview of those parts of numerical analysis most relevant to statisticians. In this second edition, the material on optimization has been completely rewritten. There is now an entire chapter on the MM algorithm in addition to more comprehensive treatments of constrained optimization, penalty and barrier methods, and model selection via the lasso. There is also new material on the Cholesky decomposition, Gram-Schmidt orthogonalization, the QR decomposition, the singular value decomposition, and reproducing kernel Hilbert spaces. The discussions of the bootstrap, permutation testing, independent Monte Carlo, and hidden Markov chains are updated, and a new chapter on advanced MCMC topics introduces students to Markov random fields, reversible jump MCMC, and convergence analysis in Gibbs sampling. Numerical Analysis for Statisticians can serve as a graduate text for a course surveying computational statistics. With a careful selection of topics and appropriate supplementation, it can be used at the undergraduate level. It contains enough material for a graduate course on optimization theory. Because many chapters are nearly self-contained, professional statisticians will also find the book useful as a reference.
Biological and biomedical studies have entered a new era over the past two decades thanks to the wide use of mathematical models and computational approaches. A booming of computational biology, which sheerly was a theoretician's fantasy twenty years ago, has become a reality. Obsession with computational biology and theoretical approaches is evidenced in articles hailing the arrival of what are va- ously called quantitative biology, bioinformatics, theoretical biology, and systems biology. New technologies and data resources in genetics, such as the International HapMap project, enable large-scale studies, such as genome-wide association st- ies, which could potentially identify most common genetic variants as well as rare variants of the human DNA that may alter individual's susceptibility to disease and the response to medical treatment. Meanwhile the multi-electrode recording from behaving animals makes it feasible to control the animal mental activity, which could potentially lead to the development of useful brain-machine interfaces. - bracing the sheer volume of genetic, genomic, and other type of data, an essential approach is, ?rst of all, to avoid drowning the true signal in the data. It has been witnessed that theoretical approach to biology has emerged as a powerful and st- ulating research paradigm in biological studies, which in turn leads to a new - search paradigm in mathematics, physics, and computer science and moves forward with the interplays among experimental studies and outcomes, simulation studies, and theoretical investigations.
Molchanov, S.: Lectures on random media.- Zeitouni, Ofer: Random walks in random environment.-den Hollander, Frank: Random polymers "
Rcpp is the glue that binds the power and versatility of R with the speed and efficiency of C++. With Rcpp, the transfer of data between R and C++ is nearly seamless, and high-performance statistical computing is finally accessible to most R users. Rcpp should be part of every statistician's toolbox. -- Michael Braun, MIT Sloan School of Management "Seamless R and C++ integration with Rcpp" is simply a wonderful book. For anyone who uses C/C++ and R, it is an indispensable resource. The writing is outstanding. A huge bonus is the section on applications. This section covers the matrix packages Armadillo and Eigen and the GNU Scientific Library as well as RInside which enables you to use R inside C++. These applications are what most of us need to know to really do scientific programming with R and C++. I love this book. -- Robert McCulloch, University of Chicago Booth School of Business Rcpp is now considered an essential package for anybody doing serious computational research using R. Dirk's book is an excellent companion and takes the reader from a gentle introduction to more advanced applications via numerous examples and efficiency enhancing gems. The book is packed with all you might have ever wanted to know about Rcpp, its cousins (RcppArmadillo, RcppEigen .etc.), modules, package development and sugar. Overall, this book is a must-have on your shelf. -- Sanjog Misra, UCLA Anderson School of Management The Rcpp package represents a major leap forward for scientific computations with R. With very few lines of C++ code, one has R's data structures readily at hand for further computations in C++. Hence, high-level numerical programming can be made in C++ almost as easily as in R, but often with a substantial speed gain. Dirk is a crucial person in these developments, and his book takes the reader from the first fragile steps on to using the full Rcpp machinery. A very recommended book -- Soren Hojsgaard," "Department of Mathematical Sciences, Aalborg University, Denmark "Seamless R and C ++ Integration with Rcpp" provides the first comprehensive introduction to Rcpp. Rcpp has become the most widely-used language extension for R, and is deployed by over one-hundred different CRAN and BioConductor packages. Rcpp permits users to pass scalars, vectors, matrices, list or entire R objects back and forth between R and C++ with ease. This brings the depth of the R analysis framework together with the power, speed, and efficiency of C++. Dirk Eddelbuettel has been a contributor to CRAN for over a decade and maintains around twenty packages. He is the Debian/Ubuntu maintainer for R and other quantitative software, edits the CRAN Task Views for Finance and High-Performance Computing, is a co-founder of the annual R/Finance conference, and an editor of the Journal of Statistical Software. He holds a Ph.D. in Mathematical Economics from EHESS (Paris), and works in Chicago as a Senior Quantitative Analyst. " |
![]() ![]() You may like...
Mokgomana - The Life Of John Kgoana…
Peter Delius, Daniel Sher
Paperback
Proteomics in Domestic Animals: from…
Andre Martinho De Almeida, David Eckersall, …
Hardcover
R5,219
Discovery Miles 52 190
Poultry and Egg Situation: July, 1971…
United States Department of Agriculture
Paperback
R404
Discovery Miles 4 040
|