![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Computer software packages > Other software packages
Leverage the flexibility and power of SAP MII to integrate your business operations with your manufacturing processes. You'll explore important new features of the product and see how to apply best practices to connect all the stakeholders in your business. This book starts with an overview of SAP's manufacturing integration and intelligence application and explains why it is so important. You'll then see how it is applied in various manufacturing sectors. The biggest challenge in manufacturing industries is to reduce the manual work and human intervention so that the process becomes automatic. SAP MII explains how to bridge the gap between management and production and bring sound vital information to the shop floor in real time. With this book you'll see how to ensure existing manufacturing and information systems share a common interface for all users in your enterprise. What You'll Learn Understand the functional aspects of SAP MII Implement SAP MII in different Manufacturing sectors Explore new technical features of SAP MII 12.x Integrate scenarios with SAP MII Discover practice guidelines Who This Book is for All levels of SAP manufacturing professionals.
This textbook presents the basic concepts and methods of fluid mechanics, including Lagrangian and Eulerian descriptions, tensors of stresses and strains, continuity, momentum, energy, thermodynamics laws, and similarity theory. The models and their solutions are presented within a context of the mechanics of multiphase media. The treatment fully utilizes the computer algebra and software system Mathematica (R) to both develop concepts and help the reader to master modern methods of solving problems in fluid mechanics. Topics and features: Glossary of over thirty Mathematica (R) computer programs Extensive, self-contained appendix of Mathematica (R) functions and their use Chapter coverage of mechanics of multiphase heterogeneous media Detailed coverage of theory of shock waves in gas dynamics Thorough discussion of aerohydrodynamics of ideal and viscous fluids an d gases Complete worked examples with detailed solutions Problem-solving approach Foundations of Fluid Mechanics with Applications is a complete and accessible text or reference for graduates and professionals in mechanics, applied mathematics, physical sciences, materials science, and engineering. It is an essential resource for the study and use of modern solution methods for problems in fluid mechanics and the underlying mathematical models. The present, softcover reprint is designed to make this classic textbook available to a wider audience.
Describing novel mathematical concepts for recommendation engines, Realtime Data Mining: Self-Learning Techniques for Recommendation Engines features a sound mathematical framework unifying approaches based on control and learning theories, tensor factorization, and hierarchical methods. Furthermore, it presents promising results of numerous experiments on real-world data. The area of realtime data mining is currently developing at an exceptionally dynamic pace, and realtime data mining systems are the counterpart of today's "classic" data mining systems. Whereas the latter learn from historical data and then use it to deduce necessary actions, realtime analytics systems learn and act continuously and autonomously. In the vanguard of these new analytics systems are recommendation engines. They are principally found on the Internet, where all information is available in realtime and an immediate feedback is guaranteed. This monograph appeals to computer scientists and specialists in machine learning, especially from the area of recommender systems, because it conveys a new way of realtime thinking by considering recommendation tasks as control-theoretic problems. Realtime Data Mining: Self-Learning Techniques for Recommendation Engines will also interest application-oriented mathematicians because it consistently combines some of the most promising mathematical areas, namely control theory, multilevel approximation, and tensor factorization.
This volume compiles the major results of conference participants from the "Third International Conference in Network Analysis" held at the Higher School of Economics, Nizhny Novgorod in May 2013, with the aim to initiate further joint research among different groups. The contributions in this book cover a broad range of topics relevant to the theory and practice of network analysis, including the reliability of complex networks, software, theory, methodology, and applications. Network analysis has become a major research topic over the last several years. The broad range of applications that can be described and analyzed by means of a network has brought together researchers, practitioners from numerous fields such as operations research, computer science, transportation, energy, biomedicine, computational neuroscience and social sciences. In addition, new approaches and computer environments such as parallel computing, grid computing, cloud computing, and quantum computing have helped to solve large scale network optimization problems.
The book opens with a short introduction to Indian music, in particular classical Hindustani music, followed by a chapter on the role of statistics in computational musicology. The authors then show how to analyze musical structure using Rubato, the music software package for statistical analysis, in particular addressing modeling, melodic similarity and lengths, and entropy analysis; they then show how to analyze musical performance. Finally, they explain how the concept of seminatural composition can help a music composer to obtain the opening line of a raga-based song using Monte Carlo simulation. The book will be of interest to musicians and musicologists, particularly those engaged with Indian music.
Economists can use computer algebra systems to manipulate symbolic models, derive numerical computations, and analyze empirical relationships among variables. Maxima is an open-source multi-platform computer algebra system that rivals proprietary software. Maxima's symbolic and computational capabilities enable economists and financial analysts to develop a deeper understanding of models by allowing them to explore the implications of differences in parameter values, providing numerical solutions to problems that would be otherwise intractable, and by providing graphical representations that can guide analysis. This book provides a step-by-step tutorial for using this program to examine the economic relationships that form the core of microeconomics in a way that complements traditional modeling techniques. Readers learn how to phrase the relevant analysis and how symbolic expressions, numerical computations, and graphical representations can be used to learn from microeconomic models. In particular, comparative statics analysis is facilitated. Little has been published on Maxima and its applications in economics and finance, and this volume will appeal to advanced undergraduates, graduate-level students studying microeconomics, academic researchers in economics and finance, economists, and financial analysts.
This book highlights recent advances in natural computing, including biology and its theory, bio-inspired computing, computational aesthetics, computational models and theories, computing with natural media, philosophy of natural computing and educational technology. It presents extended versions of the best papers selected from the symposium "7th International Workshop on Natural Computing" (IWNC7), held in Tokyo, Japan, in 2013. The target audience is not limited to researchers working in natural computing but also those active in biological engineering, fine/media art design, aesthetics and philosophy.
This book gathers a selection of invited and contributed lectures from the European Conference on Numerical Mathematics and Advanced Applications (ENUMATH) held in Lausanne, Switzerland, August 26-30, 2013. It provides an overview of recent developments in numerical analysis, computational mathematics and applications from leading experts in the field. New results on finite element methods, multiscale methods, numerical linear algebra and discretization techniques for fluid mechanics and optics are presented. As such, the book offers a valuable resource for a wide range of readers looking for a state-of-the-art overview of advanced techniques, algorithms and results in numerical mathematics and scientific computing.
This book offers a snapshot of the state-of-the-art in classification at the interface between statistics, computer science and application fields. The contributions span a broad spectrum, from theoretical developments to practical applications; they all share a strong computational component. The topics addressed are from the following fields: Statistics and Data Analysis; Machine Learning and Knowledge Discovery; Data Analysis in Marketing; Data Analysis in Finance and Economics; Data Analysis in Medicine and the Life Sciences; Data Analysis in the Social, Behavioural, and Health Care Sciences; Data Analysis in Interdisciplinary Domains; Classification and Subject Indexing in Library and Information Science. The book presents selected papers from the Second European Conference on Data Analysis, held at Jacobs University Bremen in July 2014. This conference unites diverse researchers in the pursuit of a common topic, creating truly unique synergies in the process.
An authoritative introduction to the latest comparative methods in evolutionary biology Phylogenetic comparative methods are a suite of statistical approaches that enable biologists to analyze and better understand the evolutionary tree of life, and shed vital new light on patterns of divergence and common ancestry among all species on Earth. This textbook shows how to carry out phylogenetic comparative analyses in the R statistical computing environment. Liam Revell and Luke Harmon provide an incisive conceptual overview of each method along with worked examples using real data and challenge problems that encourage students to learn by doing. By working through this book, students will gain a solid foundation in these methods and develop the skills they need to interpret patterns in the tree of life. Covers every major method of modern phylogenetic comparative analysis in R Explains the basics of R and discusses topics such as trait evolution, diversification, trait-dependent diversification, biogeography, and visualization Features a wealth of exercises and challenge problems Serves as an invaluable resource for students and researchers, with applications in ecology, evolution, anthropology, disease transmission, conservation biology, and a host of other areas Written by two of today's leading developers of phylogenetic comparative methods
This edited volume on the latest advances in data science covers a wide range of topics in the context of data analysis and classification. In particular, it includes contributions on classification methods for high-dimensional data, clustering methods, multivariate statistical methods, and various applications. The book gathers a selection of peer-reviewed contributions presented at the Fifteenth Conference of the International Federation of Classification Societies (IFCS2015), which was hosted by the Alma Mater Studiorum, University of Bologna, from July 5 to 8, 2015.
The main focus of this book is on presenting advances in fuzzy statistics, and on proposing a methodology for testing hypotheses in the fuzzy environment based on the estimation of fuzzy confidence intervals, a context in which not only the data but also the hypotheses are considered to be fuzzy. The proposed method for estimating these intervals is based on the likelihood method and employs the bootstrap technique. A new metric generalizing the signed distance measure is also developed. In turn, the book presents two conceptually diverse applications in which defended intervals play a role: one is a novel methodology for evaluating linguistic questionnaires developed at the global and individual levels; the other is an extension of the multi-ways analysis of variance to the space of fuzzy sets. To illustrate these approaches, the book presents several empirical and simulation-based studies with synthetic and real data sets. In closing, it presents a coherent R package called "FuzzySTs" which covers all the previously mentioned concepts with full documentation and selected use cases. Given its scope, the book will be of interest to all researchers whose work involves advanced fuzzy statistical methods.
"A well-written and -illustrated work, recommended for all college libraries. Lower-division undergraduates through faculty." Doing Statistics With SPSS is derived from the authors' many years of experience teaching undergraduates data handling using SPSS. It assumes no prior understanding beyond that of basic mathematical operations and is therefore suitable for anyone undertaking an introductory statistics course as part of a science based undergraduate programme. The text will: enable the reader to make informed choices about what statistical tests to employ; what assumptions are made in using a particular test; demonstrate how to execute the analysis using SPSS; and guide the reader in his//her interpretation of its output. Each chapter ends with an exercise and provides detailed instructions on how to run the analysis using SPSS release 10. Learning is further guided by pointing the reader to particular aspects of the SPSS output and by having the reader engage with specified items of information from the SPSS results.This text is more complete than the alternatives that usually fall into one of two camps. They either provide an explanation of the concepts but no instructions on how to execute the analysis with SPSS, or they are a manual which instructs the reader on how to drive the software but with minimal explanation of what it all means. This book offers the best elements of both in a style that is economical and accessible. Doing Statistics with SPSS will be essential reading for undergraduates in psychology and health-related disciplines, and likely to be of invaluable use to many other students in the social sciences taking a course in statistics.
The Professional Product Owner's Guide to Maximizing Value with Scrum "This book presents a method of communicating our desires, cogently, coherently, and with a minimum of fuss and bother." -Ken Schwaber, Chairman & Founder, Scrum.org The role of the Product Owner is more crucial than ever. But it's about much more than mechanics: it's about taking accountability and refocusing on value as the primary objective of all you do. In The Professional Product Owner, two leading experts in successful Scrum product ownership show exactly how to do this. You'll learn how to identify where value can be found, measure it, and maximize it throughout your entire product lifecycle. Drawing on their combined 40+ years of experience in using agile and Scrum in product management, Don McGreal and Ralph Jocham guide you through all facets of envisioning, emerging, and maturing a product using the Scrum framework. McGreal and Jocham discuss strategy, showing how to connect Vision, Value, and Validation in ROI-focused agile product management. They lay out Scrum best-practices for managing complexity and continuously delivering value, and they define the concrete practices and tools you can use to manage Product Backlogs and release plans, all with the goal of making you a more successful Product Owner. Throughout, the authors share revealing personal experiences that illuminate obstacles to success and show how they can be overcome. Define success from the "outside in," using external customer-driven measurements to guide development and maximize value Bring empowerment and entrepreneurship to the Product Owner's role, and align everyone behind a shared business model Use Evidence-Based Management (EBMgt) to invest in the right places, make smarter decisions, and reduce risk Effectively apply Scrum's Product Owner role, artifacts, and events Populate and manage Product Backlogs, and use just-in-time specifications Plan and manage releases, improve transparency, and reduce technical debt Scale your product, not your Scrum Use Scrum to inject autonomy, mastery, and purpose into your product team's work Whatever your role in product management or agile development, this guide will help you deliver products that offer more value, more rapidly, and more often. Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
Contingency tables arise in diverse fields, including life sciences, education, social and political sciences, notably market research and opinion surveys. Their analysis plays an essential role in gaining insight into structures of the quantities under consideration and in supporting decision making. Combining both theory and applications, this book presents models and methods for the analysis of two- and multidimensional-contingency tables. An excellent reference for advanced undergraduates, graduate students, and practitioners in statistics as well as biosciences, social sciences, education, and economics, the work may also be used as a textbook for a course on categorical data analysis. Prerequisites include basic background on statistical inference and knowledge of statistical software packages.
This book constitutes the refereed proceedings of the 19th International Conference on Distributed and Computer and Communication Networks, DCCN 2016, held in Moscow, Russia, in November 2016. The 50 revised full papers and the 6 revised short papers presented were carefully reviewed and selected from 141 submissions. The papers cover the following topics: computer and communication networks architecture optimization; control in computer and communication networks; performance and QoS/QoE evaluation in wireless networks; analytical modeling and simulation of next-generation communications systems; queuing theory and reliability theory applications in computer networks; wireless 4G/5G networks, cm- and mm-wave radio technologies; RFID technology and its application in intellectual transportation networks; internet of things, wearables, and applications of distributed information systems; probabilistic and statistical models in information systems; mathematical modeling of high-tech systems; mathematical modeling and control problems; distributed and cloud computing systems, big data analytics.
Introduction to Real World Statistics provides students with the basic concepts and practices of applied statistics, including data management and preparation; an introduction to the concept of probability; data screening and descriptive statistics; various inferential analysis techniques; and a series of exercises that are designed to integrate core statistical concepts. The author's systematic approach, which assumes no prior knowledge of the subject, equips student practitioners with a fundamental understanding of applied statistics that can be deployed across a wide variety of disciplines and professions. Notable features include: short, digestible chapters that build and integrate statistical skills with real-world applications, demonstrating the flexible usage of statistics for evidence-based decision-making statistical procedures presented in a practical context with less emphasis on technical jargon early chapters that build a foundation before presenting statistical procedures SPSS step-by-step detailed instructions designed to reinforce student understanding real world exercises complete with answers chapter PowerPoints and test banks for instructors.
This book discusses the problem of model choice when the statistical models are separate, also called nonnested. Chapter 1 provides an introduction, motivating examples and a general overview of the problem. Chapter 2 presents the classical or frequentist approach to the problem as well as several alternative procedures and their properties. Chapter 3 explores the Bayesian approach, the limitations of the classical Bayes factors and the proposed alternative Bayes factors to overcome these limitations. It also discusses a significance Bayesian procedure. Lastly, Chapter 4 examines the pure likelihood approach. Various real-data examples and computer simulations are provided throughout the text.
Learn how to develop powerful data analytics applications quickly for SQL Server database administrators and developers. Organizations will be able to sift data and derive the business intelligence needed to drive business decisions and profit. The addition of R to SQL Server 2016 places a powerful analytical processor into an environment most developers are already comfortable with - Visual Studio. This book walks even the newest of users through the creation process of a powerful R-language tool set for use in analyzing and reporting on your data. As a SQL Server database administrator or developer, it is sometimes difficult to stay on the bleeding edge of technology. Microsoft's addition of R to SQL Server 2016 is sure to be a game-changer, and the language will certainly become an integral part of future releases. R is in fact widely used today in statistical and related applications, and its use is only growing. Beginning SQL Server R Services helps you jump on board this important trend by providing good examples with detailed explanations of the WHY and not just the HOW. Walks you through setup and installation of SQL Server R Services. Explains the basics of working with R Tools for Visual Studio. Provides a road map to successfully creating custom R code. What You Will Learn Discover R's role in the SQL Server 2016 hierarchy. Manage the components needed to run SQL Server R Services code. Run R-language analytics and queries inside the database. Create analytic solutions that run across multiple datasets. Gain in-depth knowledge of the R language itself. Implement custom SQL Server R Services solutions. Who This Book Is For Any level of database administrator or developer, but specifically it's for those developers with the need to develop powerful data analytics applications quickly. Seasoned R developers will appreciate the book for its robust learning pattern, using visual aids in combination with properties explanations and scenarios. Beginning SQL Server R Services is the perfect "new hire" gift for new database developers in any organization.
Among the various multi-level formulations of mathematical models in decision making processes, this book focuses on the bi-level model. Being the most frequently used, the bi-level model addresses conflicts which exist in multi-level decision making processes. From the perspective of bi-level structure and uncertainty, this book takes real-life problems as the background, focuses on the so-called random-like uncertainty, and develops the general framework of random-like bi-level decision making problems. The random-like uncertainty considered in this book includes random phenomenon, random-overlapped random (Ra-Ra) phenomenon and fuzzy-overlapped random (Ra-Fu) phenomenon. Basic theory, models, algorithms and practical applications for different types of random-like bi-level decision making problems are also presented in this book.
Agricultural Internet of Things and Decision Support for Smart Farming reveals how a set of key enabling technologies (KET) related to agronomic management, remote and proximal sensing, data mining, decision-making and automation can be efficiently integrated in one system. Chapters cover how KETs enable real-time monitoring of soil conditions, determine real-time, site-specific requirements of crop systems, help develop a decision support system (DSS) aimed at maximizing the efficient use of resources, and provide planning for agronomic inputs differentiated in time and space. This book is ideal for researchers, academics, post-graduate students and practitioners who want to embrace new agricultural technologies.
Up-to-Date Guidance from One of the Foremost Members of the R Core Team Written by John M. Chambers, the leading developer of the original S software, Extending R covers key concepts and techniques in R to support analysis and research projects. It presents the core ideas of R, provides programming guidance for projects of all scales, and introduces new, valuable techniques that extend R. The book first describes the fundamental characteristics and background of R, giving readers a foundation for the remainder of the text. It next discusses topics relevant to programming with R, including the apparatus that supports extensions. The book then extends R's data structures through object-oriented programming, which is the key technique for coping with complexity. The book also incorporates a new structure for interfaces applicable to a variety of languages. A reflection of what R is today, this guide explains how to design and organize extensions to R by correctly using objects, functions, and interfaces. It enables current and future users to add their own contributions and packages to R. A 2017 Choice Outstanding Academic Title
This volume provides essential guidance for transforming mathematics learning in schools through the use of innovative technology, pedagogy, and curriculum. It presents clear, rigorous evidence of the impact technology can have in improving students learning of important yet complex mathematical concepts -- and goes beyond a focus on technology alone to clearly explain how teacher professional development, pedagogy, curriculum, and student participation and identity each play an essential role in transforming mathematics classrooms with technology. Further, evidence of effectiveness is complemented by insightful case studies of how key factors lead to enhancing learning, including the contributions of design research, classroom discourse, and meaningful assessment. The volume organizes over 15 years of sustained research by multiple investigators in different states and countries who together developed an approach called "SimCalc" that radically transforms how Algebra and Calculus are taught. The SimCalc program engages students around simulated motions, such as races on a soccer field, and builds understanding using visual representations such as graphs, and familiar representations such as stories to help students to develop meaning for more abstract mathematical symbols. Further, the SimCalc program leverages classroom wireless networks to increase participation by all students in doing, talking about, and reflecting on mathematics. Unlike many technology programs, SimCalc research shows the benefits of balanced attention to curriculum, pedagogy, teacher professional development, assessment and technology -- and has proven effectiveness results at the scale of hundreds of schools and classrooms. Combining the findings of multiple investigators in one accessible volume reveals the depth and breadth of the research program, and engages readers interested in: * Engaging students in deeply learning the important concepts in mathematics * Designing innovative curriculum, software, and professional development * Effective uses of technology to improve mathematics education * Creating integrated systems of teaching that transform mathematics classrooms * Scaling up new pedagogies to hundreds of schools and classrooms * Conducting research that really matters for the future of mathematics learning * Engaging students in deeply learning the important concepts in mathematics * Designing innovative curriculum, software, and professional development * Effective uses of technology to improve mathematics education * Creating integrated systems of teaching that transform mathematics classrooms * Scaling up new pedagogies to hundreds of schools and classrooms * Conducting research that really matters for the future of mathematics learning |
You may like...
Hardware Accelerator Systems for…
Shiho Kim, Ganesh Chandra Deka
Hardcover
R3,950
Discovery Miles 39 500
Immigrant Narratives in Contemporary…
Susan Ireland, Patrice J Proulx
Hardcover
R2,569
Discovery Miles 25 690
|