![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Computer software packages > Other software packages
Describing novel mathematical concepts for recommendation engines, Realtime Data Mining: Self-Learning Techniques for Recommendation Engines features a sound mathematical framework unifying approaches based on control and learning theories, tensor factorization, and hierarchical methods. Furthermore, it presents promising results of numerous experiments on real-world data. The area of realtime data mining is currently developing at an exceptionally dynamic pace, and realtime data mining systems are the counterpart of today's "classic" data mining systems. Whereas the latter learn from historical data and then use it to deduce necessary actions, realtime analytics systems learn and act continuously and autonomously. In the vanguard of these new analytics systems are recommendation engines. They are principally found on the Internet, where all information is available in realtime and an immediate feedback is guaranteed. This monograph appeals to computer scientists and specialists in machine learning, especially from the area of recommender systems, because it conveys a new way of realtime thinking by considering recommendation tasks as control-theoretic problems. Realtime Data Mining: Self-Learning Techniques for Recommendation Engines will also interest application-oriented mathematicians because it consistently combines some of the most promising mathematical areas, namely control theory, multilevel approximation, and tensor factorization.
This volume compiles the major results of conference participants from the "Third International Conference in Network Analysis" held at the Higher School of Economics, Nizhny Novgorod in May 2013, with the aim to initiate further joint research among different groups. The contributions in this book cover a broad range of topics relevant to the theory and practice of network analysis, including the reliability of complex networks, software, theory, methodology, and applications. Network analysis has become a major research topic over the last several years. The broad range of applications that can be described and analyzed by means of a network has brought together researchers, practitioners from numerous fields such as operations research, computer science, transportation, energy, biomedicine, computational neuroscience and social sciences. In addition, new approaches and computer environments such as parallel computing, grid computing, cloud computing, and quantum computing have helped to solve large scale network optimization problems.
The book opens with a short introduction to Indian music, in particular classical Hindustani music, followed by a chapter on the role of statistics in computational musicology. The authors then show how to analyze musical structure using Rubato, the music software package for statistical analysis, in particular addressing modeling, melodic similarity and lengths, and entropy analysis; they then show how to analyze musical performance. Finally, they explain how the concept of seminatural composition can help a music composer to obtain the opening line of a raga-based song using Monte Carlo simulation. The book will be of interest to musicians and musicologists, particularly those engaged with Indian music.
Economists can use computer algebra systems to manipulate symbolic models, derive numerical computations, and analyze empirical relationships among variables. Maxima is an open-source multi-platform computer algebra system that rivals proprietary software. Maxima's symbolic and computational capabilities enable economists and financial analysts to develop a deeper understanding of models by allowing them to explore the implications of differences in parameter values, providing numerical solutions to problems that would be otherwise intractable, and by providing graphical representations that can guide analysis. This book provides a step-by-step tutorial for using this program to examine the economic relationships that form the core of microeconomics in a way that complements traditional modeling techniques. Readers learn how to phrase the relevant analysis and how symbolic expressions, numerical computations, and graphical representations can be used to learn from microeconomic models. In particular, comparative statics analysis is facilitated. Little has been published on Maxima and its applications in economics and finance, and this volume will appeal to advanced undergraduates, graduate-level students studying microeconomics, academic researchers in economics and finance, economists, and financial analysts.
This book highlights recent advances in natural computing, including biology and its theory, bio-inspired computing, computational aesthetics, computational models and theories, computing with natural media, philosophy of natural computing and educational technology. It presents extended versions of the best papers selected from the symposium "7th International Workshop on Natural Computing" (IWNC7), held in Tokyo, Japan, in 2013. The target audience is not limited to researchers working in natural computing but also those active in biological engineering, fine/media art design, aesthetics and philosophy.
This book gathers a selection of invited and contributed lectures from the European Conference on Numerical Mathematics and Advanced Applications (ENUMATH) held in Lausanne, Switzerland, August 26-30, 2013. It provides an overview of recent developments in numerical analysis, computational mathematics and applications from leading experts in the field. New results on finite element methods, multiscale methods, numerical linear algebra and discretization techniques for fluid mechanics and optics are presented. As such, the book offers a valuable resource for a wide range of readers looking for a state-of-the-art overview of advanced techniques, algorithms and results in numerical mathematics and scientific computing.
This book offers a snapshot of the state-of-the-art in classification at the interface between statistics, computer science and application fields. The contributions span a broad spectrum, from theoretical developments to practical applications; they all share a strong computational component. The topics addressed are from the following fields: Statistics and Data Analysis; Machine Learning and Knowledge Discovery; Data Analysis in Marketing; Data Analysis in Finance and Economics; Data Analysis in Medicine and the Life Sciences; Data Analysis in the Social, Behavioural, and Health Care Sciences; Data Analysis in Interdisciplinary Domains; Classification and Subject Indexing in Library and Information Science. The book presents selected papers from the Second European Conference on Data Analysis, held at Jacobs University Bremen in July 2014. This conference unites diverse researchers in the pursuit of a common topic, creating truly unique synergies in the process.
This edited volume on the latest advances in data science covers a wide range of topics in the context of data analysis and classification. In particular, it includes contributions on classification methods for high-dimensional data, clustering methods, multivariate statistical methods, and various applications. The book gathers a selection of peer-reviewed contributions presented at the Fifteenth Conference of the International Federation of Classification Societies (IFCS2015), which was hosted by the Alma Mater Studiorum, University of Bologna, from July 5 to 8, 2015.
The main focus of this book is on presenting advances in fuzzy statistics, and on proposing a methodology for testing hypotheses in the fuzzy environment based on the estimation of fuzzy confidence intervals, a context in which not only the data but also the hypotheses are considered to be fuzzy. The proposed method for estimating these intervals is based on the likelihood method and employs the bootstrap technique. A new metric generalizing the signed distance measure is also developed. In turn, the book presents two conceptually diverse applications in which defended intervals play a role: one is a novel methodology for evaluating linguistic questionnaires developed at the global and individual levels; the other is an extension of the multi-ways analysis of variance to the space of fuzzy sets. To illustrate these approaches, the book presents several empirical and simulation-based studies with synthetic and real data sets. In closing, it presents a coherent R package called "FuzzySTs" which covers all the previously mentioned concepts with full documentation and selected use cases. Given its scope, the book will be of interest to all researchers whose work involves advanced fuzzy statistical methods.
Contingency tables arise in diverse fields, including life sciences, education, social and political sciences, notably market research and opinion surveys. Their analysis plays an essential role in gaining insight into structures of the quantities under consideration and in supporting decision making. Combining both theory and applications, this book presents models and methods for the analysis of two- and multidimensional-contingency tables. An excellent reference for advanced undergraduates, graduate students, and practitioners in statistics as well as biosciences, social sciences, education, and economics, the work may also be used as a textbook for a course on categorical data analysis. Prerequisites include basic background on statistical inference and knowledge of statistical software packages.
The R Companion to Elementary Applied Statistics includes traditional applications covered in elementary statistics courses as well as some additional methods that address questions that might arise during or after the application of commonly used methods. Beginning with basic tasks and computations with R, readers are then guided through ways to bring data into R, manipulate the data as needed, perform common statistical computations and elementary exploratory data analysis tasks, prepare customized graphics, and take advantage of R for a wide range of methods that find use in many elementary applications of statistics. Features: Requires no familiarity with R or programming to begin using this book. Can be used as a resource for a project-based elementary applied statistics course, or for researchers and professionals who wish to delve more deeply into R. Contains an extensive array of examples that illustrate ideas on various ways to use pre-packaged routines, as well as on developing individualized code. Presents quite a few methods that may be considered non-traditional, or advanced. Includes accompanying carefully documented script files that contain code for all examples presented, and more. R is a powerful and free product that is gaining popularity across the scientific community in both the professional and academic arenas. Statistical methods discussed in this book are used to introduce the fundamentals of using R functions and provide ideas for developing further skills in writing R code. These ideas are illustrated through an extensive collection of examples. About the Author: Christopher Hay-Jahans received his Doctor of Arts in mathematics from Idaho State University in 1999. After spending three years at University of South Dakota, he moved to Juneau, Alaska, in 2002 where he has taught a wide range of undergraduate courses at University of Alaska Southeast.
This book constitutes the refereed proceedings of the 19th International Conference on Distributed and Computer and Communication Networks, DCCN 2016, held in Moscow, Russia, in November 2016. The 50 revised full papers and the 6 revised short papers presented were carefully reviewed and selected from 141 submissions. The papers cover the following topics: computer and communication networks architecture optimization; control in computer and communication networks; performance and QoS/QoE evaluation in wireless networks; analytical modeling and simulation of next-generation communications systems; queuing theory and reliability theory applications in computer networks; wireless 4G/5G networks, cm- and mm-wave radio technologies; RFID technology and its application in intellectual transportation networks; internet of things, wearables, and applications of distributed information systems; probabilistic and statistical models in information systems; mathematical modeling of high-tech systems; mathematical modeling and control problems; distributed and cloud computing systems, big data analytics.
This book discusses the problem of model choice when the statistical models are separate, also called nonnested. Chapter 1 provides an introduction, motivating examples and a general overview of the problem. Chapter 2 presents the classical or frequentist approach to the problem as well as several alternative procedures and their properties. Chapter 3 explores the Bayesian approach, the limitations of the classical Bayes factors and the proposed alternative Bayes factors to overcome these limitations. It also discusses a significance Bayesian procedure. Lastly, Chapter 4 examines the pure likelihood approach. Various real-data examples and computer simulations are provided throughout the text.
Learn how to develop powerful data analytics applications quickly for SQL Server database administrators and developers. Organizations will be able to sift data and derive the business intelligence needed to drive business decisions and profit. The addition of R to SQL Server 2016 places a powerful analytical processor into an environment most developers are already comfortable with - Visual Studio. This book walks even the newest of users through the creation process of a powerful R-language tool set for use in analyzing and reporting on your data. As a SQL Server database administrator or developer, it is sometimes difficult to stay on the bleeding edge of technology. Microsoft's addition of R to SQL Server 2016 is sure to be a game-changer, and the language will certainly become an integral part of future releases. R is in fact widely used today in statistical and related applications, and its use is only growing. Beginning SQL Server R Services helps you jump on board this important trend by providing good examples with detailed explanations of the WHY and not just the HOW. Walks you through setup and installation of SQL Server R Services. Explains the basics of working with R Tools for Visual Studio. Provides a road map to successfully creating custom R code. What You Will Learn Discover R's role in the SQL Server 2016 hierarchy. Manage the components needed to run SQL Server R Services code. Run R-language analytics and queries inside the database. Create analytic solutions that run across multiple datasets. Gain in-depth knowledge of the R language itself. Implement custom SQL Server R Services solutions. Who This Book Is For Any level of database administrator or developer, but specifically it's for those developers with the need to develop powerful data analytics applications quickly. Seasoned R developers will appreciate the book for its robust learning pattern, using visual aids in combination with properties explanations and scenarios. Beginning SQL Server R Services is the perfect "new hire" gift for new database developers in any organization.
Among the various multi-level formulations of mathematical models in decision making processes, this book focuses on the bi-level model. Being the most frequently used, the bi-level model addresses conflicts which exist in multi-level decision making processes. From the perspective of bi-level structure and uncertainty, this book takes real-life problems as the background, focuses on the so-called random-like uncertainty, and develops the general framework of random-like bi-level decision making problems. The random-like uncertainty considered in this book includes random phenomenon, random-overlapped random (Ra-Ra) phenomenon and fuzzy-overlapped random (Ra-Fu) phenomenon. Basic theory, models, algorithms and practical applications for different types of random-like bi-level decision making problems are also presented in this book.
Agricultural Internet of Things and Decision Support for Smart Farming reveals how a set of key enabling technologies (KET) related to agronomic management, remote and proximal sensing, data mining, decision-making and automation can be efficiently integrated in one system. Chapters cover how KETs enable real-time monitoring of soil conditions, determine real-time, site-specific requirements of crop systems, help develop a decision support system (DSS) aimed at maximizing the efficient use of resources, and provide planning for agronomic inputs differentiated in time and space. This book is ideal for researchers, academics, post-graduate students and practitioners who want to embrace new agricultural technologies.
This Bayesian modeling book provides a self-contained entry to computational Bayesian statistics. Focusing on the most standard statistical models and backed up by real datasets and an all-inclusive R (CRAN) package called bayess, the book provides an operational methodology for conducting Bayesian inference, rather than focusing on its theoretical and philosophical justifications. Readers are empowered to participate in the real-life data analysis situations depicted here from the beginning. Special attention is paid to the derivation of prior distributions in each case and specific reference solutions are given for each of the models. Similarly, computational details are worked out to lead the reader towards an effective programming of the methods given in the book. In particular, all R codes are discussed with enough detail to make them readily understandable and expandable. Bayesian Essentials with R can be used as a textbook at both undergraduate and graduate levels. It is particularly useful with students in professional degree programs and scientists to analyze data the Bayesian way. The text will also enhance introductory courses on Bayesian statistics. Prerequisites for the book are an undergraduate background in probability and statistics, if not in Bayesian statistics.
This volume provides essential guidance for transforming mathematics learning in schools through the use of innovative technology, pedagogy, and curriculum. It presents clear, rigorous evidence of the impact technology can have in improving students learning of important yet complex mathematical concepts -- and goes beyond a focus on technology alone to clearly explain how teacher professional development, pedagogy, curriculum, and student participation and identity each play an essential role in transforming mathematics classrooms with technology. Further, evidence of effectiveness is complemented by insightful case studies of how key factors lead to enhancing learning, including the contributions of design research, classroom discourse, and meaningful assessment. The volume organizes over 15 years of sustained research by multiple investigators in different states and countries who together developed an approach called "SimCalc" that radically transforms how Algebra and Calculus are taught. The SimCalc program engages students around simulated motions, such as races on a soccer field, and builds understanding using visual representations such as graphs, and familiar representations such as stories to help students to develop meaning for more abstract mathematical symbols. Further, the SimCalc program leverages classroom wireless networks to increase participation by all students in doing, talking about, and reflecting on mathematics. Unlike many technology programs, SimCalc research shows the benefits of balanced attention to curriculum, pedagogy, teacher professional development, assessment and technology -- and has proven effectiveness results at the scale of hundreds of schools and classrooms. Combining the findings of multiple investigators in one accessible volume reveals the depth and breadth of the research program, and engages readers interested in: * Engaging students in deeply learning the important concepts in mathematics * Designing innovative curriculum, software, and professional development * Effective uses of technology to improve mathematics education * Creating integrated systems of teaching that transform mathematics classrooms * Scaling up new pedagogies to hundreds of schools and classrooms * Conducting research that really matters for the future of mathematics learning * Engaging students in deeply learning the important concepts in mathematics * Designing innovative curriculum, software, and professional development * Effective uses of technology to improve mathematics education * Creating integrated systems of teaching that transform mathematics classrooms * Scaling up new pedagogies to hundreds of schools and classrooms * Conducting research that really matters for the future of mathematics learning
This volume contains pioneering contributions to both the theory and practice of optimal experimental design. Topics include the optimality of designs in linear and nonlinear models, as well as designs for correlated observations and for sequential experimentation. There is an emphasis on applications to medicine, in particular, to the design of clinical trials. Scientists from Europe, the US, Asia, Australia and Africa contributed to this volume of papers from the 11th Workshop on Model Oriented Design and Analysis.
Numerical Methods with MATLAB provides a highly-practical reference work to assist anyone working with numerical methods. A wide range of techniques are introduced, their merits discussed and fully working MATLAB code samples supplied to demonstrate how they can be coded and applied. Numerical methods have wide applicability across many scientific, mathematical, and engineering disciplines and are most often employed in situations where working out an exact answer to the problem by another method is impractical. Numerical Methods with MATLAB presents each topic in a concise and readable format to help you learn fast and effectively. It is not intended to be a reference work to the conceptual theory that underpins the numerical methods themselves. A wide range of reference works are readily available to supply this information. If, however, you want assistance in applying numerical methods then this is the book for you.
Dynamical system theory has developed rapidly over the past fifty years. It is a subject upon which the theory of limit cycles has a significant impact for both theoretical advances and practical solutions to problems. Hopf bifurcation from a center or a focus is integral to the theory of bifurcation of limit cycles, for which normal form theory is a central tool. Although Hopf bifurcation has been studied for more than half a century, and normal form theory for over 100 years, efficient computation in this area is still a challenge with implications for Hilbert's 16th problem. This book introduces the most recent developments in this field and provides major advances in fundamental theory of limit cycles. Split into two parts, the first focuses on the study of limit cycles bifurcating from Hopf singularity using normal form theory with later application to Hilbert's 16th problem, while the second considers near Hamiltonian systems using Melnikov function as the main mathematical tool. Classic topics with new results are presented in a clear and concise manner and are accompanied by the liberal use of illustrations throughout. Containing a wealth of examples and structured algorithms that are treated in detail, a good balance between theoretical and applied topics is demonstrated. By including complete Maple programs within the text, this book also enables the reader to reconstruct the majority of formulas provided, facilitating the use of concrete models for study. Through the adoption of an elementary and practical approach, this book will be of use to graduate mathematics students wishing to study the theory of limit cycles as well as scientists, across a number of disciplines, with an interest in the applications of periodic behavior."
This book teaches how to use Mathematica to solve a wide variety of problems in mathematics and physics. It is based on the lecture notes of a course taught at the University of Illinois at Chicago to advanced undergrad and graduate students. The book is illustrated with many detailed examples that require the student to construct meticulous, step-by-step, easy to read Mathematica programs. The first part, in which the reader learns how to use a variety of Mathematica commands, contains examples, not long explanations; the second part contains attractive applications.
Intended for anyone needing to apply statistical analysis to a large variety of science and engineering problems, this book shows how to use SPSS, MATLAB, STATISTICA and R for data description, statistical inference, classification and regression, factor analysis, survival data and directional statistics. The 2nd edition includes the R language, a new section on bootstrap estimation methods and an improved treatment of tree classifiers, plus additional examples and exercises.
A state-of-the-art research monograph providing consistent treatment of supervisory control, by one of the world's leading groups in the area of Bayesian identification, control, and decision making.
The emphasis of the book is given in how to construct different types of solutions (exact, approximate analytical, numerical, graphical) of numerous nonlinear PDEs correctly, easily, and quickly. The reader can learn a wide variety of techniques and solve numerous nonlinear PDEs included and many other differential equations, simplifying and transforming the equations and solutions, arbitrary functions and parameters, presented in the book). Numerous comparisons and relationships between various types of solutions, different methods and approaches are provided, the results obtained in Maple and Mathematica, facilitates a deeper understanding of the subject. Among a big number of CAS, we choose the two systems, Maple and Mathematica, that are used worldwide by students, research mathematicians, scientists, and engineers. As in the our previous books, we propose the idea to use in parallel both systems, Maple and Mathematica, since in many research problems frequently it is required to compare independent results obtained by using different computer algebra systems, Maple and/or Mathematica, at all stages of the solution process. One of the main points (related to CAS) is based on the implementation of a whole solution method (e.g. starting from an analytical derivation of exact governing equations, constructing discretizations and analytical formulas of a numerical method, performing numerical procedure, obtaining various visualizations, and comparing the numerical solution obtained with other types of solutions considered in the book, e.g. with asymptotic solution). |
You may like...
29th European Symposium on Computer…
Anton A Kiss, Edwin Zondervan, …
Hardcover
R11,317
Discovery Miles 113 170
Handbook of HydroInformatics - Volume…
Saeid Eslamian, Faezeh Eslamian
Paperback
R3,507
Discovery Miles 35 070
Data Communication and Computer Networks…
Jill West, Curt M. White
Paperback
Cybersecurity Issues and Challenges for…
Saqib Saeed, Abdullah M. Almuhaideb, …
Hardcover
R7,752
Discovery Miles 77 520
|