![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Computer software packages > Other software packages
This book brings together two major trends: data science and blockchains. It is one of the first books to systematically cover the analytics aspects of blockchains, with the goal of linking traditional data mining research communities with novel data sources. Data science and big data technologies can be considered cornerstones of the data-driven digital transformation of organizations and society. The concept of blockchain is predicted to enable and spark transformation on par with that associated with the invention of the Internet. Cryptocurrencies are the first successful use case of highly distributed blockchains, like the world wide web was to the Internet. The book takes the reader through basic data exploration topics, proceeding systematically, method by method, through supervised and unsupervised learning approaches and information visualization techniques, all the way to understanding the blockchain data from the network science perspective. Chapters introduce the cryptocurrency blockchain data model and methods to explore it using structured query language, association rules, clustering, classification, visualization, and network science. Each chapter introduces basic concepts, presents examples with real cryptocurrency blockchain data and offers exercises and questions for further discussion. Such an approach intends to serve as a good starting point for undergraduate and graduate students to learn data science topics using cryptocurrency blockchain examples. It is also aimed at researchers and analysts who already possess good analytical and data skills, but who do not yet have the specific knowledge to tackle analytic questions about blockchain transactions. The readers improve their knowledge about the essential data science techniques in order to turn mere transactional information into social, economic, and business insights.
Written specifically for those with no prior programming experience and minimal quantitative training, this accessible text walks behavioral science students and researchers through the process of programming using MATLAB. The book explores examples, terms, and programming needs relevant to those in the behavioral sciences and helps readers perform virtually any computational function in solving their research problems. Principles are illustrated with usable code. Each chapter opens with a list of objectives followed by new commands required to accomplish those goals. These objectives also serve as a reference to help readers easily relocate a section of interest. Sample code and output and chapter problems demonstrate how to write a program and explore a model so readers can see the results obtained using different equations and values. A web site provides solutions to selected problems and the book's program code output and examples so readers can manipulate them as needed. The outputs on the website have color, motion, and sound. Highlights of the new edition include: *Updated to reflect changes in the most recent version of MATLAB, including special tricks and new functions. *More information on debugging and common errors and more basic problems in the rudiments of MATLAB to help novice users get up and running more quickly. *A new chapter on Psychtoolbox, a suite of programs specifically geared to behavioral science research. *A new chapter on Graphical User Interfaces (GUIs) for user-friendly communication. *Increased emphasis on pre-allocation of memory, recursion, handles, and matrix algebra operators. The book opens with an overview of what is to come and tips on how to write clear programs followed by pointers for interacting with MATLAB, including its commands and how to read error messages. The matrices chapter reviews how to store and access data. Chapter 4 examines how to carry out calculations followed by a review of how to perform various actions depending on the conditions. The chapter on input and output demonstrates how to design programs to create dialogs with users (e.g., participants in studies) and read and write data to and from external files. Chapter 7 reviews the data types available in MATLAB. Readers learn how to write a program as a stand-alone module in Chapter 8. In Chapters 9 and 10 readers learn how to create line and bar graphs or reshape images. Readers learn how to create animations and sounds in Chapter 11. The book concludes with tips on how to use MATLAB with applications such as GUIs and Psychtoolbox. Intended as a primary text for Matlab courses for advanced undergraduate and/or graduate students in experimental and cognitive psychology and/or neuroscience as well as a supplementary text for labs in data (statistical) analysis, research methods, and computational modeling (programming), the book also appeals to individual researchers in these disciplines who wish to get up and running in MATLAB.
This book examines current topics and trends in strategic auditing, accounting and finance in digital transformation both from a theoretical and practical perspective. It covers areas such as internal control, corporate governance, enterprise risk management, sustainability and competition. The contributors of this volume emphasize how strategic approaches in this area help companies in achieving targets. The contributions illustrate how by providing good governance, reliable financial reporting, and accountability, businesses can win a competitive advantage. It further discusses how new technological developments like artificial intelligence (AI), cybersystems, network technologies, financial mobility and smart applications, will shape the future of accounting and auditing for firms.
Until recently, acquiring a background in the basic methodological principles that apply to most types of investigations meant struggling to obtain results through laborious calculations. The advent of statistical software packages has removed much of the tedium and many of the errors of manual calculations and allowed a marked increase in the depth and sophistication of analyses. Although most statistics classes now incorporate some instruction in using a statistics package, most introductory texts do not. Quantitative Investigations in the Biosciences using MINITAB fills this void by providing an introduction to investigative methods that, in addition to outlining statistical principles and describing methods of calculations, also presents essential commands and interprets output from the statistics package MINITAB. The author introduces the three basic elements of investigations-design, analysis, and reporting-using an extremely accessible approach that keeps mathematical detail to a minimum. He groups statistical tests according to the type of problem they are used to examine, such as comparisons, sequential relationships, and associations. Quantitative Investigations in the Biosciences using MINITAB draws techniques and examples from a variety of subjects, ranging from physiology and biochemistry through to ecology, behavioral sciences, medicine, agriculture and horticulture, and complements the mathematical results with formal conclusions for all of the worked examples. It thus provides an ideal handbook for anyone in virtually any field who wants to apply statistical techniques to their investigations.
This thesis presents a revolutionary technique for modelling the dynamics of a quantum system that is strongly coupled to its immediate environment. This is a challenging but timely problem. In particular it is relevant for modelling decoherence in devices such as quantum information processors, and how quantum information moves between spatially separated parts of a quantum system. The key feature of this work is a novel way to represent the dynamics of general open quantum systems as tensor networks, a result which has connections with the Feynman operator calculus and process tensor approaches to quantum mechanics. The tensor network methodology developed here has proven to be extremely powerful: For many situations it may be the most efficient way of calculating open quantum dynamics. This work is abounds with new ideas and invention, and is likely to have a very significant impact on future generations of physicists.
This volume, the third of a series, consists of applications of Mathematica (R) to a potpourri of more advanced topics. These include differential geometry of curves and surfaces, differential equations and special functions and complex analysis. Some of the newest features of Mathematica (R) are demonstrated and explained and some problems with the current implementation pointed out and possible future improvements suggested. Contains a large number of worked out examples. Explains some of the most recent mathematical features of Mathematica (R). Considers topics discussed rarely or not at all in the context of Mathematica (R). Can be used to supplement several different courses. Based on actual university courses.
Written for the practicing electronics professional, Tolerance Analysis of Electronic Circuits Using MATHCADä offers a comprehensive, step-by-step treatment of methods used to perform analyses essential to the design process of circuit cards and systems of cards, including:
"MATLAB By Example" guides the reader through each step of writing MATLAB programs. The book assumes no previous programming experience on the part of the reader, and uses multiple examples in clear language to introduce concepts and practical tools. Straightforward and detailed instructions allow beginners to learn and develop their MATLAB skills quickly. The book consists of ten chapters, discussing in detail the
integrated development environment (IDE), scalars, vectors, arrays,
adopting structured programming style using functions and recursive
functions, control flow, debugging, profiling, and structures. A
chapter also describes Symbolic Math Toolbox, teaching readers how
to solve algebraic equations, differentiation, integration,
differential equations, and Laplace and Fourier transforms.
Containing hundreds of examples illustrated using screen shots,
hundreds of exercises, and three projects, this book can be used to
complement coursework or as a self-study book, and can be used as a
textbook in universities, colleges and high schools.
Can artificial intelligence learn mathematics? The question is at the heart of this original monograph bringing together theoretical physics, modern geometry, and data science. The study of Calabi-Yau manifolds lies at an exciting intersection between physics and mathematics. Recently, there has been much activity in applying machine learning to solve otherwise intractable problems, to conjecture new formulae, or to understand the underlying structure of mathematics. In this book, insights from string and quantum field theory are combined with powerful techniques from complex and algebraic geometry, then translated into algorithms with the ultimate aim of deriving new information about Calabi-Yau manifolds. While the motivation comes from mathematical physics, the techniques are purely mathematical and the theme is that of explicit calculations. The reader is guided through the theory and provided with explicit computer code in standard software such as SageMath, Python and Mathematica to gain hands-on experience in applications of artificial intelligence to geometry. Driven by data and written in an informal style, The Calabi-Yau Landscape makes cutting-edge topics in mathematical physics, geometry and machine learning readily accessible to graduate students and beyond. The overriding ambition is to introduce some modern mathematics to the physicist, some modern physics to the mathematician, and machine learning to both.
Arguably the strongest addition to numerical finance of the past decade, Algorithmic Adjoint Differentiation (AAD) is the technology implemented in modern financial software to produce thousands of accurate risk sensitivities, within seconds, on light hardware. AAD recently became a centerpiece of modern financial systems and a key skill for all quantitative analysts, developers, risk professionals or anyone involved with derivatives. It is increasingly taught in Masters and PhD programs in finance. Danske Bank's wide scale implementation of AAD in its production and regulatory systems won the In-House System of the Year 2015 Risk award. The Modern Computational Finance books, written by three of the very people who designed Danske Bank's systems, offer a unique insight into the modern implementation of financial models. The volumes combine financial modelling, mathematics and programming to resolve real life financial problems and produce effective derivatives software. This volume is a complete, self-contained learning reference for AAD, and its application in finance. AAD is explained in deep detail throughout chapters that gently lead readers from the theoretical foundations to the most delicate areas of an efficient implementation, such as memory management, parallel implementation and acceleration with expression templates. The book comes with professional source code in C++, including an efficient, up to date implementation of AAD and a generic parallel simulation library. Modern C++, high performance parallel programming and interfacing C++ with Excel are also covered. The book builds the code step-by-step, while the code illustrates the concepts and notions developed in the book.
This book collects peer-reviewed contributions on modern statistical methods and topics, stemming from the third workshop on Analytical Methods in Statistics, AMISTAT 2019, held in Liberec, Czech Republic, on September 16-19, 2019. Real-life problems demand statistical solutions, which in turn require new and profound mathematical methods. As such, the book is not only a collection of solved problems but also a source of new methods and their practical extensions. The authoritative contributions focus on analytical methods in statistics, asymptotics, estimation and Fisher information, robustness, stochastic models and inequalities, and other related fields; further, they address e.g. average autoregression quantiles, neural networks, weighted empirical minimum distance estimators, implied volatility surface estimation, the Grenander estimator, non-Gaussian component analysis, meta learning, and high-dimensional errors-in-variables models.
A step-by-step approach to problem-solving techniques using SPSS(R) in the fields of sports science and physical education Featuring a clear and accessible approach to the methods, processes, and statistical techniques used in sports science and physical education, Sports Research with Analytical Solution using SPSS(R) emphasizes how to conduct and interpret a range of statistical analysis using SPSS. The book also addresses issues faced by research scholars in these fields by providing analytical solutions to various research problems without reliance on mathematical rigor. Logically arranged to cover both fundamental and advanced concepts, the book presents standard univariate and complex multivariate statistical techniques used in sports research such as multiple regression analysis, discriminant analysis, cluster analysis, and factor analysis. The author focuses on the treatment of various parametric and nonparametric statistical tests, which are shown through the techniques and interpretations of the SPSS outputs that are generated for each analysis. Sports Research with Analytical Solution using SPSS(R) also features: * Numerous examples and case studies to provide readers with practical applications of the analytical concepts and techniques * Plentiful screen shots throughout to help demonstrate the implementation of SPSS outputs * Illustrative studies with simulated realistic data to clarify the analytical techniques covered * End-of-chapter short answer questions, multiple choice questions, assignments, and practice exercises to help build a better understanding of the presented concepts * A companion website with associated SPSS data files and PowerPoint(R) presentations for each chapter Sports Research with Analytical Solution using SPSS(R) is an excellent textbook for upper-undergraduate, graduate, and PhD-level courses in research methods, kinesiology, sports science, medicine, nutrition, health education, and physical education. The book is also an ideal reference for researchers and professionals in the fields of sports research, sports science, physical education, and social sciences, as well as anyone interested in learning SPSS.
Statistical Programming in SAS Second Edition provides a foundation for programming to implement statistical solutions using SAS, a system that has been used to solve data analytic problems for more than 40 years. The author includes motivating examples to inspire readers to generate programming solutions. Upper-level undergraduates, beginning graduate students, and professionals involved in generating programming solutions for data-analytic problems will benefit from this book. The ideal background for a reader is some background in regression modeling and introductory experience with computer programming. The coverage of statistical programming in the second edition includes Getting data into the SAS system, engineering new features, and formatting variables Writing readable and well-documented code Structuring, implementing, and debugging programs that are well documented Creating solutions to novel problems Combining data sources, extracting parts of data sets, and reshaping data sets as needed for other analyses Generating general solutions using macros Customizing output Producing insight-inspiring data visualizations Parsing, processing, and analyzing text Programming solutions using matrices and connecting to R Processing text Programming with matrices Connecting SAS with R Covering topics that are part of both base and certification exams.
The purpose of this handbook is to allow users to learn and master the mathematics software package MATLAB (R), as well as to serve as a quick reference to some of the most used instructions in the package. A unique feature of this handbook is that it can be used by the novice and by experienced users alike. For experienced users, it has four chapters with examples and applications in engineering, finance, physics, and optimization. Exercises are included, along with solutions available for the interested reader on the book's web page. These exercises are a complement for the interested reader who wishes to get a deeper understanding of MATLAB. Features Covers both MATLAB and introduction to Simulink Covers the use of GUIs in MATLAB and Simulink Offers downloadable examples and programs from the handbook's website Provides an introduction to object oriented programming using MATLAB Includes applications from many areas Includes the realization of executable files for MATLAB programs and Simulink models
Stress Testing and Risk Integration in Banks provides a comprehensive view of the risk management activity by means of the stress testing process. An introduction to multivariate time series modeling paves the way to scenario analysis in order to assess a bank resilience against adverse macroeconomic conditions. Assets and liabilities are jointly studied to highlight the key issues that a risk manager needs to face. A multi-national bank prototype is used all over the book for diving into market, credit, and operational stress testing. Interest rate, liquidity and other major risks are also studied together with the former to outline how to implement a fully integrated risk management toolkit. Examples, business cases, and exercises worked in Matlab and R facilitate readers to develop their own models and methodologies.
This book features selected papers presented at the 2nd International Conference on Advanced Computing Technologies and Applications, held at SVKM's Dwarkadas J. Sanghvi College of Engineering, Mumbai, India, from 28 to 29 February 2020. Covering recent advances in next-generation computing, the book focuses on recent developments in intelligent computing, such as linguistic computing, statistical computing, data computing and ambient applications.
This book presents the latest research on the statistical analysis of functional, high-dimensional and other complex data, addressing methodological and computational aspects, as well as real-world applications. It covers topics like classification, confidence bands, density estimation, depth, diagnostic tests, dimension reduction, estimation on manifolds, high- and infinite-dimensional statistics, inference on functional data, networks, operatorial statistics, prediction, regression, robustness, sequential learning, small-ball probability, smoothing, spatial data, testing, and topological object data analysis, and includes applications in automobile engineering, criminology, drawing recognition, economics, environmetrics, medicine, mobile phone data, spectrometrics and urban environments. The book gathers selected, refereed contributions presented at the Fifth International Workshop on Functional and Operatorial Statistics (IWFOS) in Brno, Czech Republic. The workshop was originally to be held on June 24-26, 2020, but had to be postponed as a consequence of the COVID-19 pandemic. Initiated by the Working Group on Functional and Operatorial Statistics at the University of Toulouse in 2008, the IWFOS workshops provide a forum to discuss the latest trends and advances in functional statistics and related fields, and foster the exchange of ideas and international collaboration in the field.
Want to use the power of R sooner rather than later? Don't have time to plow through wordy texts and online manuals? Use this book for quick, simple code to get your projects up and running. It includes code and examples applicable to many disciplines. Written in everyday language with a minimum of complexity, each chapter provides the building blocks you need to fit R's astounding capabilities to your analytics, reporting, and visualization needs. CRAN Recipes recognizes how needless jargon and complexity get in your way. Busy professionals need simple examples and intuitive descriptions; side trips and meandering philosophical discussions are left for other books. Here R scripts are condensed, to the extent possible, to copy-paste-run format. Chapters and examples are structured to purpose rather than particular functions (e.g., "dirty data cleanup" rather than the R package name "janitor"). Everyday language eliminates the need to know functions/packages in advance. What You Will Learn Carry out input/output; visualizations; data munging; manipulations at the group level; and quick data exploration Handle forecasting (multivariate, time series, logistic regression, Facebook's Prophet, and others) Use text analytics; sampling; financial analysis; and advanced pattern matching (regex) Manipulate data using DPLYR: filter, sort, summarize, add new fields to datasets, and apply powerful IF functions Create combinations or subsets of files using joins Write efficient code using pipes to eliminate intermediate steps (MAGRITTR) Work with string/character manipulation of all types (STRINGR) Discover counts, patterns, and how to locate whole words Do wild-card matching, extraction, and invert-match Work with dates using LUBRIDATE Fix dirty data; attractive formatting; bad habits to avoid Who This Book Is For Programmers/data scientists with at least some prior exposure to R.
Based on the new 'guided-tour' concept that eliminates the start-up transient encountered in learning new programming languages, this beginner's introduction to MATLAB teaches a sufficient subset of the functionality and gives the reader practical experience on how to find more information. Recent developments in MATLAB to advance programming are described using realistic examples in order to prepare students for larger programming projects. In addition, a large number of exercises, tips, and solutions mean that the course can be followed with or without a computer. The development of MATLAB programming and its use in engineering courses makes this a valuable self-study guide for both engineering students and practicing engineers.
Harness the power of Salesforce to manage and grow your business. This book shows you how to use the Salesforce CRM tool to consolidate consumer data into a single place to gain better insight into your business and more easily manage data. Data (such as email, spreadsheets, databases) is generated through the front office or face of your business, where your company interacts with customers and revenue is generated. In a hotel, for instance, the front office is the lobby where guests are greeted, their problems are handled, and room payments are made. Another example is a coffee shop, where the front office is an employee taking a customer's order or serving a drink. Salespeople connect to customers by selling your company's goods or services. Marketing team members connect with them through advertising and promotional activities. Service and support staff assist customers with problems and provide help with products. This book introduces the many ways Salesforce-based innovations are transforming the technology landscape and the strategies that may be used for designing and launching a digital front office. The book examines how organizations can launch and grow digital solutions and strategies for the governance of the platform and provides an overview of digital transformation across industries. What You Will Learn Understand basic Salesforce concepts, including the digital front office process tower, lead to cash journey, core CRM functions, best practices, and more Review data management concepts, integrated sales, customer service, marketing operations, and proposal and business development needs in a systematic way Use frameworks to build a business architecture and multi-year technology roadmap Get familiar with Salesforce business processes and concepts such as account, contact, lead, and opportunity management; marketing campaigns; master data management (MDM); and lead scoring, grading, and activity management across the front office Define and develop digital marketing challenges and strategy (people, process, brand, messaging, and ROI), measure campaign data, and create an end-to-end campaign in Salesforce Who This Book Is For Business executives, C-suites, IT management, and Salesforce managers and professionals working in IT, business development, sales operations, program management, marketing operations, and proposal development
This primer has been designed as a self-instructional text which serves to introduce the reader to both the principles of statistical modelling of covariance structures and to the use of the EQS software package. It is divided into three parts - the first covering the basic ideas and language of covariance structure modelling together with an introduction to the EQS package. The second section covers a wide variety of models suitable for cross-sectional and longitudinal data and the final section discusses a wide variety of practical problems. This book should be of interest to researchers in psychology, sociology and medicine who use the EQS software; applied and consultant statisticians.
Write automated unit tests for the ABAP language. This book teaches programmers using simple examples and metaphors and explains the underlying concepts of writing effective automated unit tests. Many, if not most, ABAP programmers learned their programming and testing skills before the ABAP development environment provided an automated unit testing facility. Automated Unit Testing with ABAP: A Practical Approach offers hope and salvation to ABAP programmers who continue to toil with antiquated manual unit testing processes, taking them by the hand and lifting them out of that dungeon of despair with a modern and proven alternative. It begins by explaining how the xUnit family of automated testing frameworks provides a quick and effective means of insuring high-quality software. It then focuses on the ABAP Unit Testing Facility, the xUnit framework applicable specifically to the ABAP language, showing how it can be used to bring ABAP applications under automated testing control, from old legacy applications to those newly written. Whereas xUnit testing has been widely accepted with developers writing in many other programming languages, it is an unfortunate fact in the ABAP community that many programmers still are unfamiliar with xUnit concepts and do not know how to begin implementing automated unit testing into their development process. This book demonstrates how to refactor programs so they become designed for testability, showing how to use process encapsulation and test isolation to facilitate automated testing, including a thorough explanation of test-driven development and the use of test doubles. The book: Shows how to write automated unit tests for ABAP Instills ABAP programmers with the confidence to refactor poorly written code Explains how an automated testing harness facilitates rapid software development Teaches how to utilize test-driven development (TDD) with ABAP Offers advice and tips on the best ways to write automated unit tests What You Will Learn Become familiar with the xUnit approach to testing Know the ABAP statements that interfere with running automated unit tests and how to accommodate them Understand what it means to isolate code for testing and how this is achieved Gain the confidence to refactor poorly written code Make ABAP programs designed for testability Reap the benefits of spending less time manually unit testing ABAP programs Use test-driven development (TDD) with ABAP programming Use configurable test doubles in ABAP Who This Book Is For ABAP programmers who remain unfamiliar with the automated unit testing facility and those who already use it but want to improve their skill writing and using automated tests. The book addresses the reluctance and trepidation felt by procedural ABAP programmers who need to know some object-oriented concepts to use this facility, expands their horizons, and helps them step through the doorway leading to a different approach to program design.
Take an in-depth look at SAP SuccessFactors talent modules with this complete guide to configuration, administration, and best practices. This two-volume series follows a logical progression of SAP SuccessFactors modules that should be configured to complete a comprehensive talent management solution. The authors walk you through fully functional simple implementations in the primary chapters for each module before diving into advanced topics in subsequent chapters. In volume 2, you will explore the development module in three more chapters by learning to configure and use development plans, career worksheets, and mentoring. Then, the book examines succession management, covering topics such as configuring, administering, and using the 9-box, the Talent Review form, nominations, succession org charts, talent pools, and succession presentations. The authors then sum up with a review of what you learned and final conclusions. Within each topic, the book touches on the integration points with other modules as well as internationalization. The authors also provide recommendations and insights from real world experience. Having finished the book, you will have an understanding of what comprises a complete SAP SuccessFactors talent management solution and how to configure, administer, and use each module within it. What You Will Learn Work with the career worksheet Build mentoring into your SAP SuccessFactors solution Display and update relevant talent data in a succession org chart Who This Book Is For Implementation partners and customers who are project managers, configuration specialists, analysts, or system administrators.
This book presents the best papers from the 1st International Conference on Mathematical Research for Blockchain Economy (MARBLE) 2019, held in Santorini, Greece. While most blockchain conferences and forums are dedicated to business applications, product development or Initial Coin Offering (ICO) launches, this conference focused on the mathematics behind blockchain to bridge the gap between practice and theory. Every year, thousands of blockchain projects are launched and circulated in the market, and there is a tremendous wealth of blockchain applications, from finance to healthcare, education, media, logistics and more. However, due to theoretical and technical barriers, most of these applications are impractical for use in a real-world business context. The papers in this book reveal the challenges and limitations, such as scalability, latency, privacy and security, and showcase solutions and developments to overcome them. |
![]() ![]() You may like...
Parallel Computing in Science and…
R udiger Dierstein, Dieter Muller-Wichards, …
Paperback
R1,556
Discovery Miles 15 560
Vusi - Business & Life Lessons From a…
Vusi Thembekwayo
Paperback
![]()
Norms, Logics and Information Systems…
H. Prakken, P. McNamara
Hardcover
R2,274
Discovery Miles 22 740
Learn German with Frankenstein - A…
Mary Shelley, Weeve Languages
Paperback
R474
Discovery Miles 4 740
Contemporary Wabi-Sabi Style
Artpower International Publishers
Hardcover
|