0
Your cart

Your cart is empty

Browse All Departments
Price
  • R50 - R100 (1)
  • R100 - R250 (41)
  • R250 - R500 (186)
  • R500+ (3,074)
  • -
Status
Format
Author / Contributor
Publisher

Books > Computing & IT > Computer software packages > Other software packages

Applied Computing in Medicine and Health (Paperback): Dhiya Al-Jumeily, Abir Hussain, Conor Mallucci, Carol Oliver Applied Computing in Medicine and Health (Paperback)
Dhiya Al-Jumeily, Abir Hussain, Conor Mallucci, Carol Oliver
R2,482 R2,344 Discovery Miles 23 440 Save R138 (6%) Ships in 10 - 15 working days

Applied Computing in Medicine and Health is a comprehensive presentation of on-going investigations into current applied computing challenges and advances, with a focus on a particular class of applications, primarily artificial intelligence methods and techniques in medicine and health. Applied computing is the use of practical computer science knowledge to enable use of the latest technology and techniques in a variety of different fields ranging from business to scientific research. One of the most important and relevant areas in applied computing is the use of artificial intelligence (AI) in health and medicine. Artificial intelligence in health and medicine (AIHM) is assuming the challenge of creating and distributing tools that can support medical doctors and specialists in new endeavors. The material included covers a wide variety of interdisciplinary perspectives concerning the theory and practice of applied computing in medicine, human biology, and health care. Particular attention is given to AI-based clinical decision-making, medical knowledge engineering, knowledge-based systems in medical education and research, intelligent medical information systems, intelligent databases, intelligent devices and instruments, medical AI tools, reasoning and metareasoning in medicine, and methodological, philosophical, ethical, and intelligent medical data analysis.

Algorithmic Decision Making with Python Resources - From Multicriteria Performance Records to Decision Algorithms via... Algorithmic Decision Making with Python Resources - From Multicriteria Performance Records to Decision Algorithms via Bipolar-Valued Outranking Digraphs (Hardcover, 1st ed. 2022)
Raymond Bisdorff
R2,931 Discovery Miles 29 310 Ships in 18 - 22 working days

This book describes Python3 programming resources for implementing decision aiding algorithms in the context of a bipolar-valued outranking approach. These computing resources, made available under the name Digraph3, are useful in the field of Algorithmic Decision Theory and more specifically in outranking-based Multiple-Criteria Decision Aiding (MCDA). The first part of the book presents a set of tutorials introducing the Digraph3 collection of Python3 modules and its main objects, such as bipolar-valued digraphs and outranking digraphs. In eight methodological chapters, the second part illustrates multiple-criteria evaluation models and decision algorithms. These chapters are largely problem-oriented and demonstrate how to edit a new multiple-criteria performance tableau, how to build a best choice recommendation, how to compute the winner of an election and how to make rankings or ratings using incommensurable criteria. The book's third part presents three real-world decision case studies, while the fourth part addresses more advanced topics, such as computing ordinal correlations between bipolar-valued outranking digraphs, computing kernels in bipolar-valued digraphs, testing for confidence or stability of outranking statements when facing uncertain or solely ordinal criteria significance weights, and tempering plurality tyranny effects in social choice problems. The fifth and last part is more specifically focused on working with undirected graphs, tree graphs and forests. The closing chapter explores comparability, split, interval and permutation graphs. The book is primarily intended for graduate students in management sciences, computational statistics and operations research. The chapters presenting algorithms for ranking multicriteria performance records will be of computational interest for designers of web recommender systems. Similarly, the relative and absolute quantile-rating algorithms, discussed and illustrated in several chapters, will be of practical interest to public and private performance auditors.

Advanced Computing Technologies and Applications - Proceedings of 2nd International Conference on Advanced Computing... Advanced Computing Technologies and Applications - Proceedings of 2nd International Conference on Advanced Computing Technologies and Applications-ICACTA 2020 (Hardcover, 1st ed. 2020)
Hari Vasudevan, Antonis Michalas, Narendra Shekokar, Meera Narvekar
R5,285 Discovery Miles 52 850 Ships in 18 - 22 working days

This book features selected papers presented at the 2nd International Conference on Advanced Computing Technologies and Applications, held at SVKM's Dwarkadas J. Sanghvi College of Engineering, Mumbai, India, from 28 to 29 February 2020. Covering recent advances in next-generation computing, the book focuses on recent developments in intelligent computing, such as linguistic computing, statistical computing, data computing and ambient applications.

Handbook of Graphs and Networks in People Analytics - With Examples in R and Python (Paperback): Keith Mcnulty Handbook of Graphs and Networks in People Analytics - With Examples in R and Python (Paperback)
Keith Mcnulty
R2,149 Discovery Miles 21 490 Ships in 10 - 15 working days

Immediately implementable code, with extensive and varied illustrations of graph variants and layouts. Examples and exercises across a variety of real-life contexts including business, politics, education, social media and crime investigation. Dedicated chapter on graph visualization methods. Practical walkthroughs of common methodological uses: finding influential actors in groups, discovering hidden community structures, facilitating diverse interaction in organizations, detecting political alignment, determining what influences connection and attachment. Various downloadable data sets for use both in class and individual learning projects. Final chapter dedicated to individual or group project examples.

Handbook of Graphs and Networks in People Analytics - With Examples in R and Python (Hardcover): Keith Mcnulty Handbook of Graphs and Networks in People Analytics - With Examples in R and Python (Hardcover)
Keith Mcnulty
R5,203 Discovery Miles 52 030 Ships in 10 - 15 working days

Immediately implementable code, with extensive and varied illustrations of graph variants and layouts. Examples and exercises across a variety of real-life contexts including business, politics, education, social media and crime investigation. Dedicated chapter on graph visualization methods. Practical walkthroughs of common methodological uses: finding influential actors in groups, discovering hidden community structures, facilitating diverse interaction in organizations, detecting political alignment, determining what influences connection and attachment. Various downloadable data sets for use both in class and individual learning projects. Final chapter dedicated to individual or group project examples.

Learning Tableau 2022 - Fifth Edition - Create effective data visualizations, build interactive visual analytics, and improve... Learning Tableau 2022 - Fifth Edition - Create effective data visualizations, build interactive visual analytics, and improve your data storytelling capabilities (Paperback, 5th Revised edition)
Joshua N Milligan
R1,870 Discovery Miles 18 700 Ships in 18 - 22 working days

Now in full color, this edition of Learning Tableau will empower you to bring data to life and make better business decisions Key Features * Learn the basics of data analysis, from snappy visualizations to comprehensive dashboards, now in full color * Gain meaningful insights with geospatial analysis, scripting extensions, and other advanced methods * Explore the latest Tableau 2022 features, including Einstein Discovery and Explain Data Book Description Learning Tableau 2022 helps you get started with Tableau and data visualization, but it does more than just cover the basic principles. It helps you understand how to analyze and communicate data visually, and articulate data stories using advanced features. This new edition is updated with Tableau's latest features, such as dashboard extensions, Explain Data, and integration with Einstein Discovery, which will help you harness the full potential of artificial intelligence (AI) and predictive modeling in Tableau. After an exploration of the core principles, this book will teach you how to use table and level of detail calculations to extend and alter default visualizations, build interactive dashboards, and master the art of telling stories with data. You'll learn about visual statistical analytics and create different types of static and animated visualizations and dashboards for rich user experiences. We then move on to interlinking different data sources with Tableau's Data Model capabilities, along with maps and geospatial visualization. You will further use Tableau Prep Builder's ability to efficiently clean and structure data. By the end of this book, you will be proficient in implementing the powerful features of Tableau 2022 to improve the business intelligence insights you can extract from your data. What you will learn * Develop stunning visualizations to explain complex data with clarity * Build interactive dashboards to drive actionable user insights for large datasets * Explore Data Model capabilities and interlink data from various sources * Create and use calculations to solve problems and enrich your data analytics * Enable smart decision-making with data clustering, distribution, and forecasting * Extend Tableau's native functionality with extensions, scripts, and Einstein Discovery AI * Leverage Tableau Prep Builder's amazing capabilities for data cleaning and structuring * Share your data stories to build a culture of trust and action Who This Book Is For This Tableau book is for aspiring BI developers and data analysts, data scientists, researchers, and anyone else who wants to gain a deeper understanding of data through Tableau. This book starts from the ground up, so you won't need any prior experience with Tableau before you dive in, but a full Tableau license (or 14-day demo license) is essential to be able to make use of all the exercises.

R Visualizations - Derive Meaning from Data (Paperback): David Gerbing R Visualizations - Derive Meaning from Data (Paperback)
David Gerbing
R1,338 Discovery Miles 13 380 Ships in 10 - 15 working days

R Visualizations: Derive Meaning from Data focuses on one of the two major topics of data analytics: data visualization, a.k.a., computer graphics. In the book, major R systems for visualization are discussed, organized by topic and not by system. Anyone doing data analysis will be shown how to use R to generate any of the basic visualizations with the R visualization systems. Further, this book introduces the author's lessR system, which always can accomplish a visualization with less coding than the use of other systems, sometimes dramatically so, and also provides accompanying statistical analyses. Key Features Presents thorough coverage of the leading R visualization system, ggplot2. Gives specific guidance on using base R graphics to attain visualizations of the same quality as those provided by ggplot2. Shows how to create a wide range of data visualizations: distributions of categorical and continuous variables, many types of scatterplots including with a third variable, time series, and maps. Inclusion of the various approaches to R graphics organized by topic instead of by system. Presents the recent work on interactive visualization in R. David W. Gerbing received his PhD from Michigan State University in 1979 in quantitative analysis, and currently is a professor of quantitative analysis in the School of Business at Portland State University. He has published extensively in the social and behavioral sciences with a focus on quantitative methods. His lessR package has been in development since 2009.

Behavior Analysis with Machine Learning Using R (Hardcover): Enrique Garcia Ceja Behavior Analysis with Machine Learning Using R (Hardcover)
Enrique Garcia Ceja
R2,691 Discovery Miles 26 910 Ships in 10 - 15 working days

Behavior Analysis with Machine Learning Using R introduces machine learning and deep learning concepts and algorithms applied to a diverse set of behavior analysis problems. It focuses on the practical aspects of solving such problems based on data collected from sensors or stored in electronic records. The included examples demonstrate how to perform common data analysis tasks such as: data exploration, visualization, preprocessing, data representation, model training and evaluation. All of this, using the R programming language and real-life behavioral data. Even though the examples focus on behavior analysis tasks, the covered underlying concepts and methods can be applied in any other domain. No prior knowledge in machine learning is assumed. Basic experience with R and basic knowledge in statistics and high school level mathematics are beneficial. Features: Build supervised machine learning models to predict indoor locations based on WiFi signals, recognize physical activities from smartphone sensors and 3D skeleton data, detect hand gestures from accelerometer signals, and so on. Program your own ensemble learning methods and use Multi-View Stacking to fuse signals from heterogeneous data sources. Use unsupervised learning algorithms to discover criminal behavioral patterns. Build deep learning neural networks with TensorFlow and Keras to classify muscle activity from electromyography signals and Convolutional Neural Networks to detect smiles in images. Evaluate the performance of your models in traditional and multi-user settings. Build anomaly detection models such as Isolation Forests and autoencoders to detect abnormal fish behaviors. This book is intended for undergraduate/graduate students and researchers from ubiquitous computing, behavioral ecology, psychology, e-health, and other disciplines who want to learn the basics of machine learning and deep learning and for the more experienced individuals who want to apply machine learning to analyze behavioral data.

Statistical Modelling of Survival Data with Random Effects - H-Likelihood Approach (Hardcover, 1st ed. 2017): Il Do Ha,... Statistical Modelling of Survival Data with Random Effects - H-Likelihood Approach (Hardcover, 1st ed. 2017)
Il Do Ha, Jong-Hyeon Jeong, Youngjo Lee
R4,041 Discovery Miles 40 410 Ships in 18 - 22 working days

This book provides a groundbreaking introduction to the likelihood inference for correlated survival data via the hierarchical (or h-) likelihood in order to obtain the (marginal) likelihood and to address the computational difficulties in inferences and extensions. The approach presented in the book overcomes shortcomings in the traditional likelihood-based methods for clustered survival data such as intractable integration. The text includes technical materials such as derivations and proofs in each chapter, as well as recently developed software programs in R ("frailtyHL"), while the real-world data examples together with an R package, "frailtyHL" in CRAN, provide readers with useful hands-on tools. Reviewing new developments since the introduction of the h-likelihood to survival analysis (methods for interval estimation of the individual frailty and for variable selection of the fixed effects in the general class of frailty models) and guiding future directions, the book is of interest to researchers in medical and genetics fields, graduate students, and PhD (bio) statisticians.

Handbook of Multiple Comparisons (Hardcover): Xinping Cui, Thorsten Dickhaus, Ying Ding, Jason C Hsu Handbook of Multiple Comparisons (Hardcover)
Xinping Cui, Thorsten Dickhaus, Ying Ding, Jason C Hsu
R6,216 Discovery Miles 62 160 Ships in 10 - 15 working days

Coherent treatment of a variety of approaches to multiple comparisons Broad coverage of topics, with contributions by internationally leading experts Detailed treatment of applications in medicine and life sciences Suitable for researchers, lecturers / students, and practitioners

Modern Enterprise Business Intelligence and Data Management - A Roadmap for IT Directors, Managers, and Architects (Paperback):... Modern Enterprise Business Intelligence and Data Management - A Roadmap for IT Directors, Managers, and Architects (Paperback)
Alan Simon
R731 Discovery Miles 7 310 Ships in 10 - 15 working days

Nearly every large corporation and governmental agency is taking a fresh look at their current enterprise-scale business intelligence (BI) and data warehousing implementations at the dawn of the "Big Data Era"...and most see a critical need to revitalize their current capabilities. Whether they find the frustrating and business-impeding continuation of a long-standing "silos of data" problem, or an over-reliance on static production reports at the expense of predictive analytics and other true business intelligence capabilities, or a lack of progress in achieving the long-sought-after enterprise-wide "single version of the truth" - or all of the above - IT Directors, strategists, and architects find that they need to go back to the drawing board and produce a brand new BI/data warehousing roadmap to help move their enterprises from their current state to one where the promises of emerging technologies and a generation's worth of best practices can finally deliver high-impact, architecturally evolvable enterprise-scale business intelligence and data warehousing. Author Alan Simon, whose BI and data warehousing experience dates back to the late 1970s and who has personally delivered or led more than thirty enterprise-wide BI/data warehousing roadmap engagements since the mid-1990s, details a comprehensive step-by-step approach to building a best practices-driven, multi-year roadmap in the quest for architecturally evolvable BI and data warehousing at the enterprise scale. Simon addresses the triad of technology, work processes, and organizational/human factors considerations in a manner that blends the visionary and the pragmatic.

Using R and RStudio for Data Management, Statistical Analysis, and Graphics (Hardcover, 2nd edition): Nicholas J. Horton, Ken... Using R and RStudio for Data Management, Statistical Analysis, and Graphics (Hardcover, 2nd edition)
Nicholas J. Horton, Ken Kleinman
R2,265 Discovery Miles 22 650 Ships in 9 - 17 working days

Improve Your Analytical Skills Incorporating the latest R packages as well as new case studies and applications, Using R and RStudio for Data Management, Statistical Analysis, and Graphics, Second Edition covers the aspects of R most often used by statistical analysts. New users of R will find the book's simple approach easy to understand while more sophisticated users will appreciate the invaluable source of task-oriented information. New to the Second Edition The use of RStudio, which increases the productivity of R users and helps users avoid error-prone cut-and-paste workflows New chapter of case studies illustrating examples of useful data management tasks, reading complex files, making and annotating maps, "scraping" data from the web, mining text files, and generating dynamic graphics New chapter on special topics that describes key features, such as processing by group, and explores important areas of statistics, including Bayesian methods, propensity scores, and bootstrapping New chapter on simulation that includes examples of data generated from complex models and distributions A detailed discussion of the philosophy and use of the knitr and markdown packages for R New packages that extend the functionality of R and facilitate sophisticated analyses Reorganized and enhanced chapters on data input and output, data management, statistical and mathematical functions, programming, high-level graphics plots, and the customization of plots Easily Find Your Desired Task Conveniently organized by short, clear descriptive entries, this edition continues to show users how to easily perform an analytical task in R. Users can quickly find and implement the material they need through the extensive indexing, cross-referencing, and worked examples in the text. Datasets and code are available for download on a supplementary website.

Spatial Predictive Modeling with R (Hardcover): Jin Li Spatial Predictive Modeling with R (Hardcover)
Jin Li
R3,401 Discovery Miles 34 010 Ships in 10 - 15 working days

*Systematically introducing major components of SPM process. *Novel hybrid methods (228 hybrids plus numerous variants) of modern statistical methods or machine learning methods with mathematical and/or univariate geostatistical methods. *Novel predictive accuracy-based variable selection techniques for spatial predictive methods. *Predictive accuracy-based parameter/model optimization. *Reproducible examples for SPM of various data types in R.

Data Analytics for the Social Sciences - Applications in R (Paperback): G.David Garson Data Analytics for the Social Sciences - Applications in R (Paperback)
G.David Garson
R2,701 Discovery Miles 27 010 Ships in 10 - 15 working days

Data Analytics for the Social Sciences is an introductory, graduate-level treatment of data analytics for social science. It features applications in the R language, arguably the fastest growing and leading statistical tool for researchers. The book starts with an ethics chapter on the uses and potential abuses of data analytics. Chapters 2 and 3 show how to implement a broad range of statistical procedures in R. Chapters 4 and 5 deal with regression and classification trees and with random forests. Chapter 6 deals with machine learning models and the "caret" package, which makes available to the researcher hundreds of models. Chapter 7 deals with neural network analysis, and Chapter 8 deals with network analysis and visualization of network data. A final chapter treats text analysis, including web scraping, comparative word frequency tables, word clouds, word maps, sentiment analysis, topic analysis, and more. All empirical chapters have two "Quick Start" exercises designed to allow quick immersion in chapter topics, followed by "In Depth" coverage. Data are available for all examples and runnable R code is provided in a "Command Summary". An appendix provides an extended tutorial on R and RStudio. Almost 30 online supplements provide information for the complete book, "books within the book" on a variety of topics, such as agent-based modeling. Rather than focusing on equations, derivations, and proofs, this book emphasizes hands-on obtaining of output for various social science models and how to interpret the output. It is suitable for all advanced level undergraduate and graduate students learning statistical data analysis.

Computational Statistics Handbook with MATLAB (Paperback, 3rd edition): Wendy L. Martinez, Angel R. Martinez Computational Statistics Handbook with MATLAB (Paperback, 3rd edition)
Wendy L. Martinez, Angel R. Martinez
R1,566 Discovery Miles 15 660 Ships in 10 - 15 working days

A Strong Practical Focus on Applications and AlgorithmsComputational Statistics Handbook with MATLAB (R), Third Edition covers today's most commonly used techniques in computational statistics while maintaining the same philosophy and writing style of the bestselling previous editions. The text keeps theoretical concepts to a minimum, emphasizing the implementation of the methods. New to the Third EditionThis third edition is updated with the latest version of MATLAB and the corresponding version of the Statistics and Machine Learning Toolbox. It also incorporates new sections on the nearest neighbor classifier, support vector machines, model checking and regularization, partial least squares regression, and multivariate adaptive regression splines. Web ResourceThe authors include algorithmic descriptions of the procedures as well as examples that illustrate the use of algorithms in data analysis. The MATLAB code, examples, and data sets are available online.

Multilevel and Longitudinal Modeling with IBM SPSS (Paperback, 3rd edition): Ronald H Heck, Scott L. Thomas, Lynn N. Tabata Multilevel and Longitudinal Modeling with IBM SPSS (Paperback, 3rd edition)
Ronald H Heck, Scott L. Thomas, Lynn N. Tabata
R1,559 Discovery Miles 15 590 Ships in 10 - 15 working days

Multilevel and Longitudinal Modeling with IBM SPSS, Third Edition, demonstrates how to use the multilevel and longitudinal modeling techniques available in IBM SPSS Versions 25-27. Annotated screenshots with all relevant output provide readers with a step-by-step understanding of each technique as they are shown how to navigate the program. Throughout, diagnostic tools, data management issues, and related graphics are introduced. SPSS commands show the flow of the menu structure and how to facilitate model building, while annotated syntax is also available for those who prefer this approach. Extended examples illustrating the logic of model development and evaluation are included throughout the book, demonstrating the context and rationale of the research questions and the steps around which the analyses are structured. The book opens with the conceptual and methodological issues associated with multilevel and longitudinal modeling, followed by a discussion of SPSS data management techniques that facilitate working with multilevel, longitudinal, or cross-classified data sets. The next few chapters introduce the basics of multilevel modeling, developing a multilevel model, extensions of the basic two-level model (e.g., three-level models, models for binary and ordinal outcomes), and troubleshooting techniques for everyday-use programming and modeling problems along with potential solutions. Models for investigating individual and organizational change are next developed, followed by models with multivariate outcomes and, finally, models with cross-classified and multiple membership data structures. The book concludes with thoughts about ways to expand on the various multilevel and longitudinal modeling techniques introduced and issues (e.g., missing data, sample weights) to keep in mind in conducting multilevel analyses. Key features of the third edition: Thoroughly updated throughout to reflect IBM SPSS Versions 26-27. Introduction to fixed-effects regression for examining change over time where random-effects modeling may not be an optimal choice. Additional treatment of key topics specifically aligned with multilevel modeling (e.g., models with binary and ordinal outcomes). Expanded coverage of models with cross-classified and multiple membership data structures. Added discussion on model checking for improvement (e.g., examining residuals, locating outliers). Further discussion of alternatives for dealing with missing data and the use of sample weights within multilevel data structures. Supported by online data sets, the book's practical approach makes it an essential text for graduate-level courses on multilevel, longitudinal, latent variable modeling, multivariate statistics, or advanced quantitative techniques taught in departments of business, education, health, psychology, and sociology. The book will also prove appealing to researchers in these fields. The book is designed to provide an excellent supplement to Heck and Thomas's An Introduction to Multilevel Modeling Techniques, Fourth Edition; however, it can also be used with any multilevel or longitudinal modeling book or as a stand-alone text.

Handbook of Bayesian Variable Selection (Hardcover): Mahlet G. Tadesse, Marina Vannucci Handbook of Bayesian Variable Selection (Hardcover)
Mahlet G. Tadesse, Marina Vannucci
R4,670 Discovery Miles 46 700 Ships in 10 - 15 working days

* Provides a comprehensive review of methods and applications of Bayesian variable selection. * Divided into four parts: Spike-and-Slab Priors; Continuous Shrinkage Priors; Extensions to various Modeling; Other Approaches to Bayesian Variable Selection. * Covers theoretical and methodological aspects, as well as worked out examples with R code provided in the online supplement. * Includes contributions by experts in the field.

Bayesian Nonparametric Data Analysis (Hardcover, 2015 ed.): Peter Muller, Fernando Andres Quintana, Alejandro Jara, Tim Hanson Bayesian Nonparametric Data Analysis (Hardcover, 2015 ed.)
Peter Muller, Fernando Andres Quintana, Alejandro Jara, Tim Hanson
R3,023 Discovery Miles 30 230 Ships in 10 - 15 working days

This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. Rather than providing an encyclopedic review of probability models, the book's structure follows a data analysis perspective. As such, the chapters are organized by traditional data analysis problems. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones. The discussed methods are illustrated with a wealth of examples, including applications ranging from stylized examples to case studies from recent literature. The book also includes an extensive discussion of computational methods and details on their implementation. R code for many examples is included in online software pages.

Groebner Bases - Statistics and Software Systems (Hardcover, 2013 ed.): Takayuki Hibi Groebner Bases - Statistics and Software Systems (Hardcover, 2013 ed.)
Takayuki Hibi
R3,657 R2,157 Discovery Miles 21 570 Save R1,500 (41%) Ships in 10 - 15 working days

The idea of the Grobner basis first appeared in a 1927 paper by F. S. Macaulay, who succeeded in creating a combinatorial characterization of the Hilbert functions of homogeneous ideals of the polynomial ring. Later, the modern definition of the Grobner basis was independently introduced by Heisuke Hironaka in 1964 and Bruno Buchberger in 1965. However, after the discovery of the notion of the Grobner basis by Hironaka and Buchberger, it was not actively pursued for 20 years. A breakthrough was made in the mid-1980s by David Bayer and Michael Stillman, who created the Macaulay computer algebra system with the help of the Grobner basis. Since then, rapid development on the Grobner basis has been achieved by many researchers, including Bernd Sturmfels.

This book serves as a standard bible of the Grobner basis, for which the harmony of theory, application, and computation are indispensable. It provides all the fundamentals for graduate students to learn the ABC s of the Grobner basis, requiring no special knowledgeto understand those basic points.

Starting from the introductory performance of the Grobner basis (Chapter 1), a trip around mathematical software follows (Chapter 2). Then comes a deep discussion of how to compute the Grobner basis (Chapter 3). These three chapters may be regarded as the first act of a mathematical play. The second act opens with topics on algebraic statistics (Chapter 4), a fascinating research area where the Grobner basis of a toric ideal is a fundamental tool of the Markov chain Monte Carlo method. Moreover, the Grobner basis of a toric ideal has had a great influence on the study of convex polytopes (Chapter 5). In addition, the Grobner basis of the ring of differential operators gives effective algorithms on holonomic functions (Chapter 6). The third act (Chapter 7) is a collection of concrete examples and problems for Chapters 4, 5 and 6 emphasizing computation by using various software systems."

Gene Expression Data Analysis - A Statistical and Machine Learning Perspective (Hardcover): Pankaj Barah, Dhruba Kumar... Gene Expression Data Analysis - A Statistical and Machine Learning Perspective (Hardcover)
Pankaj Barah, Dhruba Kumar Bhattacharyya, Jugal Kumar Kalita
R4,094 Discovery Miles 40 940 Ships in 10 - 15 working days

An introduction to the Central Dogma of molecular biology and information flow in biological systems. A systematic overview of the methods for generating gene expression data. Background knowledge on statistical modeling and machine learning techniques. Detailed methodology of analyzing gene expression data with an example case study. Clustering methods for finding co-expression patterns from microarray, bulkRNA and scRNA data. A large number of practical tools, systems and repositories that are useful for computational biologists to create, analyze and validate biologically relevant gene expression patterns. Suitable for multi-disciplinary researchers and practitioners in computer science and biological sciences.

R for SAS and SPSS Users (Hardcover, 2nd ed. 2011): Robert A. Muenchen R for SAS and SPSS Users (Hardcover, 2nd ed. 2011)
Robert A. Muenchen
R4,385 Discovery Miles 43 850 Ships in 10 - 15 working days

R is a powerful and free software system for data analysis and graphics, with over 5,000 add-on packages available. This book introduces R using SAS and SPSS terms with which you are already familiar. It demonstrates which of the add-on packages are most like SAS and SPSS and compares them to R's built-in functions. It steps through over 30 programs written in all three packages, comparing and contrasting the packages' differing approaches. The programs and practice datasets are available for download. The glossary defines over 50 R terms using SAS/SPSS jargon and again using R jargon. The table of contents and the index allow you to find equivalent R functions by looking up both SAS statements and SPSS commands. When finished, you will be able to import data, manage and transform it, create publication quality graphics, and perform basic statistical analyses. This new edition has updated programming, an expanded index, and even more statistical methods covered in over 25 new sections.

SPSS Statistics For Dummies, 4th Edition (Paperback, 4th Edition): J Salcedo SPSS Statistics For Dummies, 4th Edition (Paperback, 4th Edition)
J Salcedo
R711 Discovery Miles 7 110 Ships in 10 - 15 working days

The fun and friendly guide to mastering IBM's Statistical Package for the Social Sciences Written by an author team with a combined 55 years of experience using SPSS, this updated guide takes the guesswork out of the subject and helps you get the most out of using the leader in predictive analysis. Covering the latest release and updates to SPSS 27.0, and including more than 150 pages of basic statistical theory, it helps you understand the mechanics behind the calculations, perform predictive analysis, produce informative graphs, and more. You'll even dabble in programming as you expand SPSS functionality to suit your specific needs. Master the fundamental mechanics of SPSS Learn how to get data into and out of the program Graph and analyze your data more accurately and efficiently Program SPSS with Command Syntax Get ready to start handling data like a pro--with step-by-step instruction and expert advice!

Kanban (Hardcover): James Turner Kanban (Hardcover)
James Turner
R795 R699 Discovery Miles 6 990 Save R96 (12%) Ships in 18 - 22 working days
Optimal Covariate Designs - Theory and Applications (Hardcover, 1st ed. 2015): Premadhis Das, Ganesh Dutta, Nripes Kumar... Optimal Covariate Designs - Theory and Applications (Hardcover, 1st ed. 2015)
Premadhis Das, Ganesh Dutta, Nripes Kumar Mandal, Bikas Kumar Sinha
R2,787 R1,886 Discovery Miles 18 860 Save R901 (32%) Ships in 10 - 15 working days

This book primarily addresses the optimality aspects of covariate designs. A covariate model is a combination of ANOVA and regression models. Optimal estimation of the parameters of the model using a suitable choice of designs is of great importance; as such choices allow experimenters to extract maximum information for the unknown model parameters. The main emphasis of this monograph is to start with an assumed covariate model in combination with some standard ANOVA set-ups such as CRD, RBD, BIBD, GDD, BTIBD, BPEBD, cross-over, multi-factor, split-plot and strip-plot designs, treatment control designs, etc. and discuss the nature and availability of optimal covariate designs. In some situations, optimal estimations of both ANOVA and the regression parameters are provided. Global optimality and D-optimality criteria are mainly used in selecting the design. The standard optimality results of both discrete and continuous set-ups have been adapted, and several novel combinatorial techniques have been applied for the construction of optimum designs using Hadamard matrices, the Kronecker product, Rao-Khatri product, mixed orthogonal arrays to name a few.

Computational Finance - An Introductory Course with R (Hardcover, 2014 ed.): Argimiro Arratia Computational Finance - An Introductory Course with R (Hardcover, 2014 ed.)
Argimiro Arratia
R2,253 Discovery Miles 22 530 Ships in 10 - 15 working days

The book covers a wide range of topics, yet essential, in Computational Finance (CF), understood as a mix of Finance, Computational Statistics, and Mathematics of Finance. In that regard it is unique in its kind, for it touches upon the basic principles of all three main components of CF, with hands-on examples for programming models in R. Thus, the first chapter gives an introduction to the Principles of Corporate Finance: the markets of stock and options, valuation and economic theory, framed within Computation and Information Theory (e.g. the famous Efficient Market Hypothesis is stated in terms of computational complexity, a new perspective). Chapters 2 and 3 give the necessary tools of Statistics for analyzing financial time series, it also goes in depth into the concepts of correlation, causality and clustering. Chapters 4 and 5 review the most important discrete and continuous models for financial time series. Each model is provided with an example program in R. Chapter 6 covers the essentials of Technical Analysis (TA) and Fundamental Analysis. This chapter is suitable for people outside academics and into the world of financial investments, as a primer in the methods of charting and analysis of value for stocks, as it is done in the financial industry. Moreover, a mathematical foundation to the seemly ad-hoc methods of TA is given, and this is new in a presentation of TA. Chapter 7 reviews the most important heuristics for optimization: simulated annealing, genetic programming, and ant colonies (swarm intelligence) which is material to feed the computer savvy readers. Chapter 8 gives the basic principles of portfolio management, through the mean-variance model, and optimization under different constraints which is a topic of current research in computation, due to its complexity. One important aspect of this chapter is that it teaches how to use the powerful tools for portfolio analysis from the RMetrics R-package. Chapter 9 is a natural continuation of chapter 8 into the new area of research of online portfolio selection. The basic model of the universal portfolio of Cover and approximate methods to computeare alsodescribed."

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Dynamic Auditing - A Student Edition
B. Marx, A. van der Watt, … Paperback R1,453 R1,299 Discovery Miles 12 990
Hiking Beyond Cape Town - 40 Inspiring…
Nina du Plessis, Willie Olivier Paperback R340 R314 Discovery Miles 3 140
Damaged Goods - The Rise and Fall of Sir…
Oliver Shah Paperback  (1)
R289 R264 Discovery Miles 2 640
A History Of South Africa - From The…
Fransjohan Pretorius Paperback R435 Discovery Miles 4 350
Spectacular Men - Race, Gender, and…
Sarah E. Chinn Hardcover R2,621 Discovery Miles 26 210
The Oxford Companion to American Theatre
Gerald Bordman, Thomas S. Hischak Hardcover R2,370 Discovery Miles 23 700
The Works of Shakespeare - in Seven…
William Shakespeare Paperback R712 Discovery Miles 7 120
Some Account of the English Stage - from…
John Genest Paperback R749 Discovery Miles 7 490
Our Long Walk To Economic Freedom…
Johan Fourie Paperback R365 R326 Discovery Miles 3 260
The Play of Brahma; an Essay on the…
James Henry 1873-1956 Cousins Hardcover R737 Discovery Miles 7 370

 

Partners