Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Computing & IT > Computer software packages > Other software packages
Biological and biomedical studies have entered a new era over the past two decades thanks to the wide use of mathematical models and computational approaches. A booming of computational biology, which sheerly was a theoretician's fantasy twenty years ago, has become a reality. Obsession with computational biology and theoretical approaches is evidenced in articles hailing the arrival of what are va- ously called quantitative biology, bioinformatics, theoretical biology, and systems biology. New technologies and data resources in genetics, such as the International HapMap project, enable large-scale studies, such as genome-wide association st- ies, which could potentially identify most common genetic variants as well as rare variants of the human DNA that may alter individual's susceptibility to disease and the response to medical treatment. Meanwhile the multi-electrode recording from behaving animals makes it feasible to control the animal mental activity, which could potentially lead to the development of useful brain-machine interfaces. - bracing the sheer volume of genetic, genomic, and other type of data, an essential approach is, ?rst of all, to avoid drowning the true signal in the data. It has been witnessed that theoretical approach to biology has emerged as a powerful and st- ulating research paradigm in biological studies, which in turn leads to a new - search paradigm in mathematics, physics, and computer science and moves forward with the interplays among experimental studies and outcomes, simulation studies, and theoretical investigations.
This book presents various recently developed and traditional statistical techniques, which are increasingly being applied in social science research. The social sciences cover diverse phenomena arising in society, the economy and the environment, some of which are too complex to allow concrete statements; some cannot be defined by direct observations or measurements; some are culture- (or region-) specific, while others are generic and common. Statistics, being a scientific method - as distinct from a 'science' related to any one type of phenomena - is used to make inductive inferences regarding various phenomena. The book addresses both qualitative and quantitative research (a combination of which is essential in social science research) and offers valuable supplementary reading at an advanced level for researchers.
Confidently shepherd your organization's implementation of Microsoft Dynamics 365 to a successful conclusion In Mastering Microsoft Dynamics 365 Implementations, accomplished executive, project manager, and author Eric Newell delivers a holistic, step-by-step reference to implementing Microsoft's cloud-based ERP and CRM business applications. You'll find the detailed and concrete instructions you need to take your implementation project all the way to the finish line, on-time, and on-budget. You'll learn: The precise steps to take, in the correct order, to bring your Dynamics 365 implementation to life What to do before you begin the project, including identifying stakeholders and building your business case How to deal with a change management throughout the lifecycle of your project How to manage conference room pilots (CRPs) and what to expect during the sessions Perfect for CIOs, technology VPs, CFOs, Operations leaders, application directors, business analysts, ERP/CRM specialists, and project managers, Mastering Microsoft Dynamics 365 Implementations is an indispensable and practical reference for guiding your real-world Dynamics 365 implementation from planning to completion.
This book focuses on the application and development of information geometric methods in the analysis, classification and retrieval of images and signals. It provides introductory chapters to help those new to information geometry and applies the theory to several applications. This area has developed rapidly over recent years, propelled by the major theoretical developments in information geometry, efficient data and image acquisition and the desire to process and interpret large databases of digital information. The book addresses both the transfer of methodology to practitioners involved in database analysis and in its efficient computational implementation.
This volume is composed of peer-reviewed papers that have developed from the First Conference of the International Society for NonParametric Statistics (ISNPS). This inaugural conference took place in Chalkidiki, Greece, June 15-19, 2012. It was organized with the co-sponsorship of the IMS, the ISI, and other organizations. M.G. Akritas, S.N. Lahiri, and D.N. Politis are the first executive committee members of ISNPS, and the editors of this volume. ISNPS has a distinguished Advisory Committee that includes Professors R.Beran, P.Bickel, R. Carroll, D. Cook, P. Hall, R. Johnson, B. Lindsay, E. Parzen, P. Robinson, M. Rosenblatt, G. Roussas, T. SubbaRao, and G. Wahba. The Charting Committee of ISNPS consists of more than 50 prominent researchers from all over the world. The chapters in this volume bring forth recent advances and trends in several areas of nonparametric statistics. In this way, the volume facilitates the exchange of research ideas, promotes collaboration among researchers from all over the world, and contributes to the further development of the field.The conference program included over 250 talks, including special invited talks, plenary talks, and contributed talks on all areas of nonparametric statistics. Out of these talks, some of the most pertinent ones have been refereed and developed into chapters that share both research and developments in the field.
This book presents selected peer-reviewed contributions from the International Work-Conference on Time Series, ITISE 2017, held in Granada, Spain, September 18-20, 2017. It discusses topics in time series analysis and forecasting, including advanced mathematical methodology, computational intelligence methods for time series, dimensionality reduction and similarity measures, econometric models, energy time series forecasting, forecasting in real problems, online learning in time series as well as high-dimensional and complex/big data time series. The series of ITISE conferences provides a forum for scientists, engineers, educators and students to discuss the latest ideas and implementations in the foundations, theory, models and applications in the field of time series analysis and forecasting. It focuses on interdisciplinary and multidisciplinary research encompassing computer science, mathematics, statistics and econometrics.
This book introduces the basic methodologies for successful data analytics. Matrix optimization and approximation are explained in detail and extensively applied to dimensionality reduction by principal component analysis and multidimensional scaling. Diffusion maps and spectral clustering are derived as powerful tools. The methodological overlap between data science and machine learning is emphasized by demonstrating how data science is used for classification as well as supervised and unsupervised learning.
Over the past decade, there has been an increase in attention and focus on the discipline of software engineering. Software engineering tools and techniques have been developed to gain more predictable quality improvement results. Process standards such as Capability Maturity Model Integration (CMMI), ISO 9000, Software Process Improvement and Capability dEtermination (SPICE), Agile Methodologies, and others have been proposed to assist organizations to achieve more predictable results by incorporating these proven standards and procedures into their software process. Software Process Improvement and Management: Approaches and Tools for Practical Development offers the latest research and case studies on software engineering and development. The production of new process standards assist organizations and software engineers in adding a measure of predictability to the software process. Companies can gain a decisive competitive advantage by applying these new and theoretical methodologies in real-world scenarios. Researchers, scholars, practitioners, students, and anyone interested in the field of software development and design should access this book as a major compendium of the latest research in the field.
This volume presents the latest advances and trends in nonparametric statistics, and gathers selected and peer-reviewed contributions from the 3rd Conference of the International Society for Nonparametric Statistics (ISNPS), held in Avignon, France on June 11-16, 2016. It covers a broad range of nonparametric statistical methods, from density estimation, survey sampling, resampling methods, kernel methods and extreme values, to statistical learning and classification, both in the standard i.i.d. case and for dependent data, including big data. The International Society for Nonparametric Statistics is uniquely global, and its international conferences are intended to foster the exchange of ideas and the latest advances among researchers from around the world, in cooperation with established statistical societies such as the Institute of Mathematical Statistics, the Bernoulli Society and the International Statistical Institute. The 3rd ISNPS conference in Avignon attracted more than 400 researchers from around the globe, and contributed to the further development and dissemination of nonparametric statistics knowledge.
Dynamic Business Process Formation fuses practical needs with theoretical input to present important research innovations in supporting Instant Virtual Enterprises (IVEs). This new organization type brings a combination of business dynamism and explicit business process structure to domains where on-the-fly formation of well-organized business networks is required to deal with the complexity of new products or services under high time pressure. This book contains the main results of the IST CrossWork project, and, importantly, looks beyond the boundaries of this project and sources input from related projects and general trends in collaborative enterprises and the automotive industry. Both the business and technical aspects of Virtual Enterprise coordination are covered within the modular structure of the book, which enables readers from different backgrounds to benefit from the book according to their interests.
The book covers a wide range of topics, yet essential, in Computational Finance (CF), understood as a mix of Finance, Computational Statistics, and Mathematics of Finance. In that regard it is unique in its kind, for it touches upon the basic principles of all three main components of CF, with hands-on examples for programming models in R. Thus, the first chapter gives an introduction to the Principles of Corporate Finance: the markets of stock and options, valuation and economic theory, framed within Computation and Information Theory (e.g. the famous Efficient Market Hypothesis is stated in terms of computational complexity, a new perspective). Chapters 2 and 3 give the necessary tools of Statistics for analyzing financial time series, it also goes in depth into the concepts of correlation, causality and clustering. Chapters 4 and 5 review the most important discrete and continuous models for financial time series. Each model is provided with an example program in R. Chapter 6 covers the essentials of Technical Analysis (TA) and Fundamental Analysis. This chapter is suitable for people outside academics and into the world of financial investments, as a primer in the methods of charting and analysis of value for stocks, as it is done in the financial industry. Moreover, a mathematical foundation to the seemly ad-hoc methods of TA is given, and this is new in a presentation of TA. Chapter 7 reviews the most important heuristics for optimization: simulated annealing, genetic programming, and ant colonies (swarm intelligence) which is material to feed the computer savvy readers. Chapter 8 gives the basic principles of portfolio management, through the mean-variance model, and optimization under different constraints which is a topic of current research in computation, due to its complexity. One important aspect of this chapter is that it teaches how to use the powerful tools for portfolio analysis from the RMetrics R-package. Chapter 9 is a natural continuation of chapter 8 into the new area of research of online portfolio selection. The basic model of the universal portfolio of Cover and approximate methods to computeare alsodescribed."
This book presents the R software environment as a key tool for oceanographic computations and provides a rationale for using R over the more widely-used tools of the field such as MATLAB. Kelley provides a general introduction to R before introducing the 'oce' package. This package greatly simplifies oceanographic analysis by handling the details of discipline-specific file formats, calculations, and plots. Designed for real-world application and developed with open-source protocols, oce supports a broad range of practical work. Generic functions take care of general operations such as subsetting and plotting data, while specialized functions address more specific tasks such as tidal decomposition, hydrographic analysis, and ADCP coordinate transformation. In addition, the package makes it easy to document work, because its functions automatically update processing logs stored within its data objects. Kelley teaches key R functions using classic examples from the history of oceanography, specifically the work of Alfred Redfield, Gordon Riley, J. Tuzo Wilson, and Walter Munk. Acknowledging the pervasive popularity of MATLAB, the book provides advice to users who would like to switch to R. Including a suite of real-life applications and over 100 exercises and solutions, the treatment is ideal for oceanographers, technicians, and students who want to add R to their list of tools for oceanographic analysis.
"We live in the age of data. In the last few years, the methodology of extracting insights from data or "data science" has emerged as a discipline in its own right. The R programming language has become one-stop solution for all types of data analysis. The growing popularity of R is due its statistical roots and a vast open source package library. The goal of "Beginning Data Science with R" is to introduce the readers to some of the useful data science techniques and their implementation with the R programming language. The book attempts to strike a balance between the how: specific processes and methodologies, and understanding the why: going over the intuition behind how a particular technique works, so that the reader can apply it to the problem at hand. This book will be useful for readers who are not familiar with statistics and the R programming language.
Adaptive Technologies and Business Integration: Social, Managerial and Organizational Dimensions provides an authoritative review of both intra-organizational and inter-organizational aspects in business integration, including: managerial and organizational integration, social integration, and technology integration, along with the resources to accomplish this competitive advantage. This Premier Reference Source contains the most comprehensive knowledge on business integration. It provides an all-encompassing perspective on the importance of business integration in the emerging networked, extended, and collaborative organizational models. The innovative research contained in this reference work make it an essential addition to every library.
Scientific Data Analysis using Jython Scripting and Java presents practical approaches for data analysis using Java scripting based on Jython, a Java implementation of the Python language. The chapters essentially cover all aspects of data analysis, from arrays and histograms to clustering analysis, curve fitting, metadata and neural networks. A comprehensive coverage of data visualisation tools implemented in Java is also included. Written by the primary developer of the jHepWork data-analysis framework, the book provides a reliable and complete reference source laying the foundation for data-analysis applications using Java scripting. More than 250 code snippets (of around 10-20 lines each) written in Jython and Java, plus several real-life examples help the reader develop a genuine feeling for data analysis techniques and their programming implementation. This is the first data-analysis and data-mining book which is completely based on the Jython language, and opens doors to scripting using a fully multi-platform and multi-threaded approach. Graduate students and researchers will benefit from the information presented in this book.
This book presents computer programming as a key method for solving mathematical problems. There are two versions of the book, one for MATLAB and one for Python. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows the students to write simple programs for solving common mathematical problems with numerical methods in engineering and science courses. The emphasis is on generic algorithms, clean design of programs, use of functions, and automatic tests for verification.
later versions. In addition, the CD-ROM contains a complete solutions manual that includes detailed solutions to all the problems in the book. If the reader does not wish to consult these solutions, then a brief list of answers is provided in printed form at the end of the book. Iwouldliketothankmyfamilymembersfortheirhelpandcontinuedsupportwi- out which this book would not have been possible. I would also like to acknowledge the help of the editior at Springer-Verlag (Dr. Thomas Ditzinger) for his assistance in bringing this book out in its present form. Finally, I would like to thank my brother, Nicola, for preparing most of the line drawings in both editions. In this edition, I am providing two email addresses for my readers to contact me (pkattan@tedata. net. jo and pkattan@lsu. edu). The old email address that appeared in the ?rst edition was cancelled in 2004. December 2006 Peter I. Kattan PrefacetotheFirstEdition 3 This is a book for people who love ?nite elements and MATLAB . We will use the popular computer package MATLAB as a matrix calculator for doing ?nite element analysis. Problems will be solved mainly using MATLAB to carry out the tedious and lengthy matrix calculations in addition to some manual manipulations especially when applying the boundary conditions. In particular the steps of the ?nite element method are emphasized in this book. The reader will not ?nd ready-made MATLAB programsforuseasblackboxes. Insteadstep-by-stepsolutionsof?niteelementpr- lems are examined in detail using MATLAB.
This book presents four mathematical essays which explore the foundations of mathematics and related topics ranging from philosophy and logic to modern computer mathematics. While connected to the historical evolution of these concepts, the essays place strong emphasis on developments still to come. The book originated in a 2002 symposium celebrating the work of Bruno Buchberger, Professor of Computer Mathematics at Johannes Kepler University, Linz, Austria, on the occasion of his 60th birthday. Among many other accomplishments, Professor Buchberger in 1985 was the founding editor of the Journal of Symbolic Computation; the founder of the Research Institute for Symbolic Computation (RISC) and its chairman from 1987-2000; the founder in 1990 of the Softwarepark Hagenberg, Austria, and since then its director. More than a decade in the making, Mathematics, Computer Science and Logic - A Never Ending Story includes essays by leading authorities, on such topics as mathematical foundations from the perspective of computer verification; a symbolic-computational philosophy and methodology for mathematics; the role of logic and algebra in software engineering; and new directions in the foundations of mathematics. These inspiring essays invite general, mathematically interested readers to share state-of-the-art ideas which advance the never ending story of mathematics, computer science and logic. Mathematics, Computer Science and Logic - A Never Ending Story is edited by Professor Peter Paule, Bruno Buchberger s successor as director of the Research Institute for Symbolic Computation. "
Digital Accounting: The Effects of the Internet and ERP on Accounting provides a foundation in digital accounting by covering fundamental topics such as accounting software, XBRL (eXtensible Business Reporting Language), and EDI. The effects of the Internet and ERP on accounting are classified and presented for each accounting cycle, along with a comprehensive discussion of online controls. ""Digital Accounting: The Effects of the Internet and ERP on Accounting"" provides a conceptual approach to handling the latest developments at the intersection of the accounting and IT fields.
Understanding Statistics in Psychology with SPSS, eighth edition, offers students a trusted, straightforward, and engaging way of learning to do statistical analyses confidently using SPSS. Comprehensive and practical, the text is organised into short accessible chapters, making it the ideal text for undergraduate psychology students needing to get to grips with statistics in class or independently. Clear diagrams and full colour screenshots from SPSS make the text suitable for beginners while the broad coverage of topics ensures that students can continue to use it as they progress to more advanced techniques. Key features * Combines coverage of statistics with full guidance on how to use SPSS to analyse data. * Suitable for use with all versions of SPSS. * Examples from a wide range of real psychological studies illustrate how statistical techniques are used in practice. * Includes clear and detailed guidance on choosing tests, interpreting findings and reporting and writing up research. * Student-focused pedagogical approach including: o Key concept boxes detailing important terms. o Focus on sections exploring complex topics in greater depth. o Explaining statistics sections clarify important statistical concepts. . Dennis Howitt and Duncan Cramer are with Loughborough University.
This volume features selected contributions on a variety of topics related to linear statistical inference. The peer-reviewed papers from the International Conference on Trends and Perspectives in Linear Statistical Inference (LinStat 2016) held in Istanbul, Turkey, 22-25 August 2016, cover topics in both theoretical and applied statistics, such as linear models, high-dimensional statistics, computational statistics, the design of experiments, and multivariate analysis. The book is intended for statisticians, Ph.D. students, and professionals who are interested in statistical inference.
This book illustrates the role of software architecture and its application in business. The author describes enterprise architecture along with business architecture to show the role of software architecture in both areas. The place of software architecture in business is outlined from many perspectives in this context. The book outlines quality attributes and how managers can use software architecture to build high quality products. Topics include business software architecture, dealing with qualities, achieving quality attributes, managing business qualities, software product line, Internet of Things (IOT), and Service Oriented Business Architecture. The book is intended to benefit students, researchers, software architects, and business architects. Provides quick and easy access to all the important aspects of software architecture in business; Highlights a wide variety of concepts of software architecture in a straightforward manner, for students, practitioners, or architects; Presents different applications of software architecture in business.
This book provides a quick access to computational tools for algebraic geometry, the mathematical discipline which handles solution sets of polynomial equations. Originating from a number of intense one week schools taught by the authors, the text is designed so as to provide a step by step introduction which enables the reader to get started with his own computational experiments right away. The authors present the basic concepts and ideas in a compact way.
Mathematics is undoubtedly the key to state-of-the-art high technology. It is aninternationaltechnicallanguageandprovestobeaneternallyyoungscience to those who have learned its ways. Long an indispensable part of research thanks to modeling and simulation, mathematics is enjoying particular vit- ity now more than ever. Nevertheless, this stormy development is resulting in increasingly high requirements for students in technical disciplines, while general interest in mathematics continues to wane at the same time. This book and its appendices on the Internet seek to deal with this issue, helping students master the di?cult transition from the receptive to the productive phase of their education. The author has repeatedly held a three-semester introductory course - titled Higher Mathematics at the University of Stuttgart and used a series of "handouts" to show further aspects, make the course contents more motiv- ing, and connect with the mechanics lectures taking place at the same time. One part of the book has more or less evolved from this on its own. True to the original objective, this part treats a variety of separate topics of varying degrees of di?culty; nevertheless, all these topics are oriented to mechanics. Anotherpartofthisbookseekstoo?eraselectionofunderstandablereal- ticmodelsthatcanbeimplementeddirectlyfromthemultitudeofmathema- calresources.TheauthordoesnotattempttohidehispreferenceofNumerical Mathematics and thus places importance on careful theoretical preparation. |
You may like...
|