![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Quantum physics (quantum mechanics)
This volume is a comprehensive compilation of carefully selected questions at the PhD qualifying exam level, including many actual questions from Columbia University, University of Chicago, MIT, State University of New York at Buffalo, Princeton University, University of Wisconsin and the University of California at Berkeley over a twenty-year period. Topics covered in this book include the basic principles of quantum phenomena, particles in potentials, motion in electromagnetic fields, perturbation theory and scattering theory, among many others.This latest edition has been updated with more problems and solutions and the original problems have also been modernized, excluding outdated questions and emphasizing those that rely on calculations. The problems range from fundamental to advanced in a wide range of topics on quantum mechanics, easily enhancing the student's knowledge through workable exercises. Simple-to-solve problems play a useful role as a first check of the student's level of knowledge whereas difficult problems will challenge the student's capacity on finding the solutions.
This book highlights the novel research in quantum memory networking, especially quantum memories based on cold atomic ensembles. After discussing the frontiers of quantum networking research and building a DLCZ-type quantum memory with cold atomic ensemble, the author develops the ring cavity enhanced quantum memory and demonstrates a filter-free quantum memory, which significantly improves the photon-atom entanglement. The author then realizes for the first time the GHZ-type entanglement of three separate quantum memories, a building block of 2D quantum repeaters and quantum networks. The author also combines quantum memories and time-resolved measurements, and reports the first multiple interference of three single photons with different colors. The book is of good reference value for graduate students, researchers, and technical personnel in quantum information sciences.
How do atoms and electrons behave? Are they just like marbles, basketballs, suns, and planets, but smaller?They are not. Atoms and electrons behave in a fashion quite unlike the familiar marbles, basketballs, suns, and planets. This sophomore-level textbook delves into the counterintuitive, intricate, but ultimately fascinating world of quantum mechanics. Building both physical insight and mathematical technique, it opens up a new world to the discerning reader.After discussing experimental demonstrations showing that atoms behave differently from marbles, the book builds up the phenomena of the quantum world - quantization, interference, and entanglement - in the simplest possible system, the qubit. Once the phenomena are introduced, it builds mathematical machinery for describing them. It goes on to generalize those concepts and that machinery to more intricate systems. Special attention is paid to identical particles, the source of considerable student confusion. In the last chapter, students get a taste of what is not treated in the book and are invited to continue exploring quantum mechanics. Problems in the book test both conceptual and technical knowledge, and invite students to develop their own questions.
Quantum physics has been highly successful for more than 90 years. Nevertheless, a rigorous construction of interacting quantum field theory is still missing. Moreover, it is still unclear how to combine quantum physics and general relativity in a unified physical theory. Attacking these challenging problems of contemporary physics requires highly advanced mathematical methods as well as radically new physical concepts. This book presents different physical ideas and mathematical approaches in this direction. It contains a carefully selected cross-section of lectures which took place in autumn 2014 at the sixth conference ``Quantum Mathematical Physics - A Bridge between Mathematics and Physics'' in Regensburg, Germany. In the tradition of the other proceedings covering this series of conferences, a special feature of this book is the exposition of a wide variety of approaches, with the intention to facilitate a comparison. The book is mainly addressed to mathematicians and physicists who are interested in fundamental questions of mathematical physics. It allows the reader to obtain a broad and up-to-date overview of a fascinating active research area.
This edited, multi-author book gathers selected, peer-reviewed contributions based on papers presented at the 23rd International Workshop on Quantum Systems in Chemistry, Physics, and Biology (QSCP-XXIII), held in Mopani Camp, The Kruger National Park, South Africa, in September 2018. The content is primarily intended for scholars, researchers, and graduate students working at universities and scientific institutes who are interested in the structure, properties, dynamics, and spectroscopy of atoms, molecules, biological systems, and condensed matter.
This book introduces readers to a variety of topics surrounding quantum field theory, notably its role in bound states, laser physics, and the gravitational coupling of Dirac particles. It discusses some rather sophisticated concepts based on detailed derivations which cannot be found elsewhere in the literature.It is suitable for undergraduates, graduates, and researchers working on general relativity, relativistic atomic physics, quantum electrodynamics, as well as theoretical laser physics.
Gives basics of Fortran and Numerical Calculation. The book includes Fortran codes and also gives access to author's website. Summarizes history of Quantum Mechanics through the most important papers. Presents detailed mathematical basis of Quantum Mechanics and Quantum Chemistry. Includes proposed exercises and do-it-yourself activities.
The heart of the book is the development of a short-time asymptotic expansion for the heat kernel. This is explained in detail and explicit examples of some advanced calculations are given. In addition some advanced methods and extensions, including path integrals, jump diffusion and others are presented. The book consists of four parts: Analysis, Geometry, Perturbations and Applications. The first part shortly reviews of some background material and gives an introduction to PDEs. The second part is devoted to a short introduction to various aspects of differential geometry that will be needed later. The third part and heart of the book presents a systematic development of effective methods for various approximation schemes for parabolic differential equations. The last part is devoted to applications in financial mathematics, in particular, stochastic differential equations. Although this book is intended for advanced undergraduate or beginning graduate students in, it should also provide a useful reference for professional physicists, applied mathematicians as well as quantitative analysts with an interest in PDEs.
Remains accessible but incorporates a rigorous mathematical treatment with clarity and emphasizing a contemporary style and a rejuvenated approach Presents a student-friendly and self-contained structure Balances theory and worked examples
The second edition deals with all essential aspects of non-relativistic quantum physics up to the quantisation of fields. In contrast to common textbooks of quantum mechanics, modern experiments are described both for the purpose of foundation of the theory and in relation to recent applications. Links are made to important research fields and applications such as elementary particle physics, solid state physics and nuclear magnetic resonance in medicine, biology and material science. Special emphasis is paid to quantum physics in nanoelectronics such as resonant tunnelling, Coulomb blockade and the realisation of quantum bits. This second edition also considers quantum transport through quantum point contacts and its application as charge detectors in nanoelectronic circuits. Also the realization and the study of electronic properties of an artificial quantum dot molecule are presented. Because of its recent interest a brief discussion of Bose-Einstein condensation has been included, as well as the recently detected Higgs particle. Another essential new addition to the present book concerns a detailed discussion of the particle picture in quantum field theory. Counterintuitive aspects of single particle quantum physics such as particle-wave duality and the Einstein-Podolski-Rosen (EPR) paradox appear more acceptable to our understanding if discussed on the background of quantum field theory. The non-locality of quantum fields explains non-local behaviour of particles in classical Schroedinger quantum mechanics. Finally, new problems have been added. The book is suitable as an introduction into quantum physics, not only for physicists but also for chemists, biologists, engineers, computer scientists and even for philosophers as far as they are interested in natural philosophy and epistemology.
This book is an introduction to quantum mechanics for undergraduates and interested lay persons. The presentation is both reader-friendly and complete. The first four chapters cover the conceptual and philosophical aspects of quantum mechanics, before the next eleven chapters gently present the mathematics underlying the subject. After a chapter on the history of the theory, the whole of quantum mechanics is then presented. This is followed by applications of the theory and a revision chapter, before we briefly look ahead at relativistic quantum theory.
Quantum mechanics is our most successful physical theory. However, it raises conceptual issues that have perplexed physicists and philosophers of science for decades. This book develops a new approach, based on the proposal that quantum theory is not a complete, final theory, but is in fact an emergent phenomenon arising from a deeper level of dynamics. The dynamics at this deeper level are taken to be an extension of classical dynamics to non-commuting matrix variables, with cyclic permutation inside a trace used as the basic calculational tool. With plausible assumptions, quantum theory is shown to emerge as the statistical thermodynamics of this underlying theory, with the canonical commutation/anticommutation relations derived from a generalized equipartition theorem. Brownian motion corrections to this thermodynamics are argued to lead to state vector reduction and to the probabilistic interpretation of quantum theory, making contact with recent phenomenological proposals for stochastic modifications to Schrodinger dynamics.
In the letters contained in this book, David Bohm argues that the dominant formal, mathematical approach in physics is seriously flawed. In the 1950s and 60s, Bohm took a direction unheard of for a professor of theoretical physics: while still researching in physics, working among others with Yakir Aharanov and later Jeffrey Bub, he also spent time studying "metaphysics"-such as Hegel's dialectics and Indian panpsychism. 50 years on, questions raised about the direction and philosophical assumptions of theoretical physics show that Bohm's arguments still have contemporary relevance.
1 Discusses quantum mechanical principles in detail. 2 Covers recent and upcoming hybrid quantum metaheuristics in a comprehensive manner. 3 Provides comparative statistical test analysis with conventional hybrid metaheuristics. 4 Discusses step by step guide in the build-up of quantum-inspired metaheuristics. 5 Provides video demonstrations on each chapter.
This textbook provides a concise yet comprehensive introduction to the principles, concepts, and methods of quantum mechanics. It covers the basic building blocks of quantum mechanics theory and applications, illuminated throughout by physical insights and examples of quantum mechanics, such as the one-dimensional eigen-problem, the harmonic oscillator, the Aharonov-Bohm effect, Landau levels, the hydrogen atom, the Landau-Zener transition and the Berry phase. This self-contained textbook is suitable for junior and senior undergraduate students, in addition to advanced students who have studied general physics (including classical mechanics, electromagnetics, and atomic physics), calculus, and linear algebra. Key features: Presents an accessible and concise treatment of quantum mechanics Contains a wealth of case studies and examples to illustrate concepts Based off the author's established course and lecture notes
This textbook provides a concise yet comprehensive introduction to the principles, concepts, and methods of quantum mechanics. It covers the basic building blocks of quantum mechanics theory and applications, illuminated throughout by physical insights and examples of quantum mechanics, such as the one-dimensional eigen-problem, the harmonic oscillator, the Aharonov-Bohm effect, Landau levels, the hydrogen atom, the Landau-Zener transition and the Berry phase. This self-contained textbook is suitable for junior and senior undergraduate students, in addition to advanced students who have studied general physics (including classical mechanics, electromagnetics, and atomic physics), calculus, and linear algebra. Key features: Presents an accessible and concise treatment of quantum mechanics Contains a wealth of case studies and examples to illustrate concepts Based off the author's established course and lecture notes
This is a practical introduction to the principal ideas in gauge theory and their applications to elementary particle physics. It explains technique and methodology with simple exposition backed up by many illustrative examples. Derivations, some of well known results, are presented in sufficient detail to make the text accessible to readers entering the field for the first time. The book focuses on the strong interaction theory of quantum chromodynamics and the electroweak interaction theory of Glashow, Weinberg, and Salam, as well as the grand unification theory, exemplified by the simplest SU(5) model. Not intended as an exhaustive survey, the book nevertheless provides the general background necessary for a serious student who wishes to specialize in the field of elementary particle theory. Physicists with an interest in general aspects of gauge theory will also find the book highly useful.
This book presents new developments in the open quantum systems theory with emphasis on applications to the (frequent) measurement theory.In the first part of the book, the uniqueness theorems for the solutions to the restricted Weyl commutation relations braiding unitary groups and semi-groups of contractions are discussed. The major theme involves an intrinsic characterization of the simplest symmetric operator solutions to the Heisenberg uncertainty relations, the problem posed by Jorgensen and Muhly, followed by the proof of the uniqueness theorems for the simplest solutions to the restricted Weyl commutation relations. The detailed study of unitary invariants of the corresponding dissipative and symmetric operators opens up a look at the classical Stone-von Neumann uniqueness theorem from a new angle and provides an extended version of the uniqueness result relating various realizations of a differentiation operator on the corresponding metric graphs.The second part of the book is devoted to mathematical problems of the quantum measurements under continuous monitoring. Among the topics discussed are the complementarity of the Quantum Zeno effect and Exponential Decay scenario in frequent quantum measurements, and a rigorous treatment, within continuous monitoring paradigm, of the celebrated 'double-slit experiment' where the renowned exclusive and interference measurement alternatives approach in quantum theory is presented in a way that is accessible for mathematicians. One of the striking applications of the generalized (1-stable) central limit theorem is the mathematical evidence of exponential decay of unstable states of the quantum pendulum under continuous monitoring.
Based on the lectures given at TU Munich for third-year physics students, this book provides the basic concepts of relativistic quantum field theory, perturbation theory, Feynman graphs, Abelian and non-Abelian gauge theories, with application to QED, QCD, and the electroweak Standard Model. It also introduces quantum field theory and particle physics for beginning graduate students with an orientation towards particle physics and its theoretical foundations. Phenomenology of W and Z bosons, as well as Higgs bosons, is part of the electroweak chapter in addition to recent experimental results, precision tests and current status of the Standard Model.
This is a monograph on geometrical and topological features which arise in various quantization procedures. Quantization schemes consider the feasibility of arriving at a quantum system from a classical one and these involve three major procedures viz. i) geometric quantization, ii) Klauder quantization, and iii) stochastic quanti zation. In geometric quantization we have to incorporate a hermitian line bundle to effectively generate the quantum Hamiltonian operator from a classical Hamil tonian. Klauder quantization also takes into account the role of the connection one-form along with coordinate independence. In stochastic quantization as pro posed by Nelson, Schrodinger equation is derived from Brownian motion processes; however, we have difficulty in its relativistic generalization. It has been pointed out by several authors that this may be circumvented by formulating a new geometry where Brownian motion proceses are considered in external as well as in internal space and, when the complexified space-time is considered, the usual path integral formulation is achieved. When this internal space variable is considered as a direc tion vector introducing an anisotropy in the internal space, we have the quantization of a Fermi field. This helps us to formulate a stochastic phase space formalism when the internal extension can be treated as a gauge theoretic extension. This suggests that massive fermions may be considered as Skyrme solitons. The nonrelativistic quantum mechanics is achieved in the sharp point limit."
The author has shown that practically all our laws, principles, and theories are not physically realizable, since they were derived from an empty space paradigm. From which this book is started with the origin of our temporal (t > 0) universe, it shows that temporal subspace is a physically realizable space within our universe. As in contrasted with generally accepted paradigm where time is an independent variable. From which the author has shown that it is not how rigorous mathematics is, but it is the temporal (t > 0) space paradigm determines the physically realizable solution. Although Einstein's relativity and Schroedinger's principle had revolutionized the modern science, this book has shown that both theory and principle are physically non-realizable since they were developed from an empty space paradigm. One of the most important contribution of this book must be the revolutionary idea of our temporal (t > 0) space, for which the author has shown that absolute certainty exists only at the present (t = 0) moment. Where past-time information has no physical substance and future-time represents a physically realizable yet uncertainty. From which the author has shown that all the existent laws, principles, and theories were based on past-time certainties to predict the future, but science is supposed to be approximated. The author has also shown that this is precisely our theoretical science was developed. But time independent laws and principles are not existed within our temporal universe, in view of the author's temporal exclusive principle. By which the author has noted that timeless science has already created a worldwide conspiracy for examples such as superposition principle, qubit information, relativity theory, wormhole travelling and many others. This book has also shown that Heisenberg's uncertainty is an observational principle independent with time, yet within our universe everything changes with time. In this book the author has also noted that micro space behaviors the same as macro space regardless of the particle size. Finally, one of interesting feature is that, that big bang creation was ignited by a self-induced gravitational force instead by time as commonly believed. Nevertheless, everything has a price to pay; a section of time t and an amount of energy E and it is not free. The author has also shown that time is the only variable that cannot be changed. Although we can squeeze a section of time t as small as we wish but we can never able to squeeze t to zero even we have all the needed energy. Nevertheless, this revolutionary book closer to the truth is highly recommended to every scientist and engineer, otherwise we will forever be trapped within the timeless fantasyland of science. This book is intended for cosmologists, particle physicists, astrophysicists, quantum physicists, computer scientists, optical scientists, communication engineers, professors, and students as a reference or a research-oriented book.
This introduction to quantum mechanics is intended for undergraduate students of physics, chemistry, and engineering with some previous exposure to quantum ideas. Following in Heisenberg's and Dirac's footsteps, this book is centered on the concept of the quantum state as an embodiment of all experimentally available information about a system, and its representation as a vector in an abstract Hilbert space. This conceptual framework and formalism are introduced immediately, and developed throughout the first four chapters, while the standard Schroedinger equation does not appear until Chapter 5. The book grew out of lecture notes developed by the author over fifteen years of teaching at the undergraduate level. In response to numerous requests by students, material is presented with an unprecedented level of detail in both derivation of technical results and discussion of their physical significance. The book is written for students to enjoy reading it, rather than to use only as a source of formulas and examples. The colloquial and personal writing style makes it easier for readers to connect with the material. Additionally, readers will find short, relatable snippets about the "founding fathers" of quantum theory, their difficult historical circumstances, personal failings and triumphs, and often tragic fate. This textbook, complete with extensive original end-of-chapter exercises, is recommended for use in one- or two-semester courses for upper level undergraduate and beginning graduate students in physics, chemistry, or engineering.
The author has shown that practically all our laws, principles, and theories are not physically realizable, since they were derived from an empty space paradigm. From which this book is started with the origin of our temporal (t > 0) universe, it shows that temporal subspace is a physically realizable space within our universe. As in contrasted with generally accepted paradigm where time is an independent variable. From which the author has shown that it is not how rigorous mathematics is, but it is the temporal (t > 0) space paradigm determines the physically realizable solution. Although Einstein's relativity and Schroedinger's principle had revolutionized the modern science, this book has shown that both theory and principle are physically non-realizable since they were developed from an empty space paradigm. One of the most important contribution of this book must be the revolutionary idea of our temporal (t > 0) space, for which the author has shown that absolute certainty exists only at the present (t = 0) moment. Where past-time information has no physical substance and future-time represents a physically realizable yet uncertainty. From which the author has shown that all the existent laws, principles, and theories were based on past-time certainties to predict the future, but science is supposed to be approximated. The author has also shown that this is precisely our theoretical science was developed. But time independent laws and principles are not existed within our temporal universe, in view of the author's temporal exclusive principle. By which the author has noted that timeless science has already created a worldwide conspiracy for examples such as superposition principle, qubit information, relativity theory, wormhole travelling and many others. This book has also shown that Heisenberg's uncertainty is an observational principle independent with time, yet within our universe everything changes with time. In this book the author has also noted that micro space behaviors the same as macro space regardless of the particle size. Finally, one of interesting feature is that, that big bang creation was ignited by a self-induced gravitational force instead by time as commonly believed. Nevertheless, everything has a price to pay; a section of time t and an amount of energy E and it is not free. The author has also shown that time is the only variable that cannot be changed. Although we can squeeze a section of time t as small as we wish but we can never able to squeeze t to zero even we have all the needed energy. Nevertheless, this revolutionary book closer to the truth is highly recommended to every scientist and engineer, otherwise we will forever be trapped within the timeless fantasyland of science. This book is intended for cosmologists, particle physicists, astrophysicists, quantum physicists, computer scientists, optical scientists, communication engineers, professors, and students as a reference or a research-oriented book.
This book covers a range of new research on computational quantum chemistry, along with a special section devoted to exotic carbon allotropes and spiro quantum theory. The section on spiro quantum theory covers the technical presentation of the ideas surrounding the emergence of a synthetic, analytical, and theoretical spiro quantum chemistry edifice, as well as a chemical topology scheme that successfully describes molecules and patterns, including the hydrocarbons and allotropes of carbon. The second part of the book covers a range of new research on computational quantum chemistry. |
You may like...
Computational Topology for Data Analysis
Tamal Krishna Dey, Yusu Wang
Hardcover
Radial Basis Function Networks 2 - New…
Robert J. Howlett, Lakhmi C. Jain
Hardcover
R4,213
Discovery Miles 42 130
Engineering Scalable, Elastic, and…
Steffen Becker, Gunnar Brataas, …
Hardcover
R2,017
Discovery Miles 20 170
Recent Advances in Ensembles for Feature…
Veronica Bolon-Canedo, Amparo Alonso-Betanzos
Hardcover
R2,661
Discovery Miles 26 610
Advances in Biomedical Polymers and…
Kunal Pal, Sarika Verma, …
Paperback
R5,401
Discovery Miles 54 010
Visual Content Indexing and Retrieval…
Jenny Benois-Pineau, Patrick Le Callet
Hardcover
R3,384
Discovery Miles 33 840
|