![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Quantum physics (quantum mechanics)
In 1861, James Clerk-Maxwell published Part II of his four-part series 'On physical lines of force'. In it, he attempted to construct a vortex model of the magnetic field but after much effort neither he, nor other late nineteenth century physicists who followed him, managed to produce a workable theory. What survived from these attempts were Maxwell's four equations of electrodynamics together with the Lorentz force law, formulae that made no attempt to describe an underlying reality but stood only as a mathematical description of the observed phenomena. When the quantum of action was introduced by Planck in 1900 the difficulties that had faced Maxwell's generation were still unresolved. Since then theories of increasing mathematical complexity have been constructed to attempt to bring the totality of phenomena into order with little success. This work examines the problems that had been abandoned long before quantum mechanics was formulated in 1925 and argues that these issues need to be revisited before real progress in the quantum theory of the electromagnetic field can be made.
According to the modal interpretation, the standard mathematical framework of quantum mechanics specifies the physical magnitudes of a system, which have definite values. Probabilities are assigned to the possible values that these magnitudes may adopt. The interpretation is thus concerned with physical properties rather than with measurement results: it is a realistic interpretation (in the sense of scientific realism). One of the notable achievements of this interpretation is that it dissolves the notorious measurement problem. The papers collected here, together with the introduction and concluding critical appraisal, explain the various forms of the modal interpretation, survey its achievements, and discuss those problems that have yet to be solved. Audience: Philosophers of science, theoretical physicists, and graduate students in these disciplines.
- integrates contemporary science, philosophy, and psychoanalysis - first book on the market to discuss more than one area of contemporary science in relation to psychoanalysis
Few people studying Gauge Field Theory need to be convinced of the importance of the work of 't Hooft. This volume contains a selection of articles and review topics covering his well-known studies on the renormalization of non-Abelian gauge theorems, topological phenomena in gauge field theory and thoughts on the role of black holes in quantum gravity. The chapters are tied together by thoughtful commentaries which provide a background and the illumination of hindsight - together they form a clear and coherent picture of the physical and theoretical importance of gauge theories and the gauge principle. This book is ideal for students and researchers. Gerard 't Hooft is Professor of Theoretical Physics at the University of Utrecht, The Netherlands. He has taught at Harvard, SLAC and Caltech prior to his present position. Other distinguished honors include being awarded the Dannie Heineman Prize, the Honorary Doctorate of Science from the University of Chicago, Wolf Prize of the State of Israel, Pius XI Medal (Vatican), and the Lorentz Medal (KNAW, Amsterdam).
This book shines bright light into the dim recesses of quantum theory, where the mysteries of entanglement, nonlocality, and wave collapse have motivated some to conjure up multiple universes, and others to adopt a "shut up and calculate" mentality. After an extensive and accessible introduction to quantum mechanics and its history, the author turns attention to his transactional model. Using a quantum handshake between normal and time-reversed waves, this model provides a clear visual picture explaining the baffling experimental results that flow daily from the quantum physics laboratories of the world. To demonstrate its powerful simplicity, the transactional model is applied to a collection of counter-intuitive experiments and conceptual problems.
Light and Vacuum presents a synthesis of selected fundamental topics of electromagnetic wave theory and quantum electrodynamics (QED) and analyzes the main theoretical difficulties encountered to ensure a coherent mathematical description of the simultaneous wave-particle nature of light, put in evidence by the experiments. The notion and the role of the quantum vacuum, strongly related to light, are extensively investigated.Classical electrodynamics issued from Maxwell's equations revealed the necessity of introducing the notion of volume for an electromagnetic wave to stand entailing precise values of cut-off wavelengths to account for the shape and dimensions of the surrounding space. Conversely, in QED, light is considered to be composed of point particles disregarding the conceptual question on how the frequency of oscillating electric and magnetic fields may be attributed to a point particle.To conciliate these concepts, the book provides a comprehensive overview of the author's work, including innovative contributions on the quantization of the vector potential amplitude at a single photon state, the non-local simultaneous wave-particle mathematical representation of the photon and finally the quantum vacuum. The purpose of the advanced elaborations is to raise questions, give hints and answers, and finally aspire for further theoretical and experimental studies in order to improve our knowledge and understanding on the real essence of Light and Vacuum.In this new edition, improvements have been made to the various chapters taking into account the actual status of the knowledge in this field. The photon wave function is further analyzed and a new concept of quantum vacuum is advanced compatible with recent astrophysical observations.
The second edition of this book deals, as the first, with the foundations of classical physics from the 'symplectic' point of view, and of quantum mechanics from the 'metaplectic' point of view. We have revised and augmented the topics studied in the first edition in the light of new results, and added several new sections. The Bohmian interpretation of quantum mechanics is discussed in detail. Phase space quantization is achieved using the 'principle of the symplectic camel', which is a deep topological property of Hamiltonian flows. We introduce the notion of 'quantum blob', which can be viewed as the fundamental phase space unit. The mathematical tools developed in this book are the theory of the symplectic and metaplectic group, the Maslov index in a rigorous form, and the Leray index of a pair of Lagrangian planes. The concept of the 'metatron' is introduced, in connection with the Bohmian theory of motion. The short-time behavior of the propagator is studied and applied to the quantum Zeno effect.
This thesis contains three breakthrough results in condensed matter physics. Firstly, broken reflection symmetry in the hidden-order phase of the heavy-fermion material URu2Si2 is observed for the first time. This represents a significant advance in the understanding of this enigmatic material which has long intrigued the condensed matter community due to its emergent long range order exhibited at low temperatures (the so-called "hidden order"). Secondly and thirdly, a novel collective mode (the chiral spin wave) and a novel composite particle (the chiral exciton) are discovered in the three dimensional topological insulator Bi2Se3. This opens up new avenues of possibility for the use of topological insulators in photonic, optoelectronic, and spintronic devices. These discoveries are facilitated by using low-temperature polarized Raman spectroscopy as a tool for identifying optically excited collective modes in strongly correlated electron systems and three-dimensional topological insulators.
'Written by young theoretical physicists who are experts in the field, this volume is meant both to provide an introduction to the field and to offer a review of the latest developments, not discussed in many other existing books, for senior researchers. It will also appeal to scientists who do not work directly on LQG but are interested in issues at the interface of general relativity and quantum physics.'CERN CourierThis volume presents a snapshot of the state-of-the-art in loop quantum gravity from the perspective of younger leading researchers. It takes the reader from the basics to recent advances, thereby bridging an important gap.The aim is two-fold - to provide a contemporary introduction to the entire field for students and post-docs, and to present an overview of the current status for more senior researchers. The contributions include the latest developments that are not discussed in existing books, particularly recent advances in quantum dynamics both in the Hamiltonian and sum over histories approaches; and applications to cosmology of the early universe and to the quantum aspects of black holes.
'Written by young theoretical physicists who are experts in the field, this volume is meant both to provide an introduction to the field and to offer a review of the latest developments, not discussed in many other existing books, for senior researchers. It will also appeal to scientists who do not work directly on LQG but are interested in issues at the interface of general relativity and quantum physics.'CERN CourierThis volume presents a snapshot of the state-of-the-art in loop quantum gravity from the perspective of younger leading researchers. It takes the reader from the basics to recent advances, thereby bridging an important gap.The aim is two-fold - to provide a contemporary introduction to the entire field for students and post-docs, and to present an overview of the current status for more senior researchers. The contributions include the latest developments that are not discussed in existing books, particularly recent advances in quantum dynamics both in the Hamiltonian and sum over histories approaches; and applications to cosmology of the early universe and to the quantum aspects of black holes.
This book aims to provide advanced students and researchers with the text on a nonperturbative, thermodynamically grounded, and largely analytical approach to four-dimensional Quantum Gauge Theory. The terrestrial, astrophysical, and cosmological applications, mostly within the realm of low-temperature photon physics, are treated.
This book is meant as an introduction to graphene plasmonics and aims at the advanced undergraduate and graduate students entering the field of plasmonics in graphene. In it different theoretical methods are introduced, starting with an elementary description of graphene plasmonics and evolving towards more advanced topics. This book is essentially self-contained and brings together a number of different topics about the field that are scattered in the vast literature. The text is composed of eleven chapters and of a set of detailed appendices. It can be read in two different ways: Reading only the chapters to get acquainted with the field of plasmonics in graphene or reading the chapters and studying the appendices to get a working knowledge of the topic. The study of the material in this book will bring the students to the forefront of the research in this field.
Dissipative forces play an important role in problems of classical as well as quantum mechanics. Since these forces are not among the basic forces of nature, it is essential to consider whether they should be treated as phenomenological interactions used in the equations of motion, or they should be derived from other conservative forces. In this book we discuss both approaches in detail starting with the Stoke's law of motion in a viscous fluid and ending with a rather detailed review of the recent attempts to understand the nature of the drag forces originating from the motion of a plane or a sphere in vacuum caused by the variations in the zero-point energy. In the classical formulation, mathematical techniques for construction of Lagrangian and Hamiltonian for the variational formulation of non-conservative systems are discussed at length. Various physical systems of interest including the problem of radiating electron, theory of natural line width, spin-boson problem, scattering and trapping of heavy ions and optical potential models of nuclear reactions are considered and solved.
In this thesis we discuss the construction of an effective field theory (EFT) for non-relativistic Majorana fermions, show how to use it to calculate observables in a thermal medium, and derive the effects of these thermal particles on the CP asymmetry. The methods described in this thesis allow a systematic and effective description of the non-relativistic dynamics of a heavy Majorana fermion at finite temperature. The CP asymmetry is studied for hierarchical and nearly degenerate heavy-neutrino masses and the analysis includes the treatment of lepton-flavor effects. Heavy Majorana neutrinos are involved in many scenarios of physics beyond the standard model and, in the leptogenesis framework, they are at the root of the baryon asymmetry in the Universe. Besides simplifying exist in g results, the EFT approach provides useful tools for addressing even more involved observables. Indeed, taken together, the approach and the material presented here represent an important step toward a systematic improvement of our knowledge of the CP asymmetry in heavy-neutrino decays at finite temperature.
We were created on the outer edge of the universe, and powerful ancients continue to watch us from that home far away. The ancients use 100% of their brains, which enables them to perform fantastic feats no earthly creature could imagine. Many years ago, these ancient beings altered the human DNA, removing our capability to use 100% of our brains, therefore keeping us forever beneath their reign and keeping them forever safe from human attack. Despite the lessened use of our brains, the human race has developed high-tech radar devices that travel into space, searching for intelligent life. The ancients have become aware of this technology; they are now concerned that humans have advanced enough to bring war. In an effort to avoid the inevitable, the ancients are coming to Earth to destroy the human race. Extermination is eminent, until Earth connects with its "sister planet." Together, the humans must fight back against this ancient power that seeks to destroy. The Outer Edge is not merely science fiction; it is an authoritative vision of our living universe. These fictional tribulations have direct and irrefutable links to science. And so the question remains: is science fiction truly fiction at all, or does it peer into the depths of fact and foreshadow devastation yet to come? Decipher the true riddles of the universe with The Outter Edge.
- New advancements of fractal analysis with applications to many scientific, engineering, and societal issues - Recent changes and challenges of fractal geometry with the rapid advancement of technology - Attracted chapters on novel theory and recent applications of fractals. - Offers recent findings, modelling and simulations of fractal analysis from eminent institutions across the world - Analytical innovations of fractal analysis - Edited collection with a variety of viewpoints
This third open access volume of the handbook series deals with accelerator physics, design, technology and operations, as well as with beam optics, dynamics and diagnostics. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A,B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access
Dissipative forces play an important role in problems of classical as well as quantum mechanics. Since these forces are not among the basic forces of nature, it is essential to consider whether they should be treated as phenomenological interactions used in the equations of motion, or they should be derived from other conservative forces. In this book we discuss both approaches in detail starting with the Stoke's law of motion in a viscous fluid and ending with a rather detailed review of the recent attempts to understand the nature of the drag forces originating from the motion of a plane or a sphere in vacuum caused by the variations in the zero-point energy. In the classical formulation, mathematical techniques for construction of Lagrangian and Hamiltonian for the variational formulation of non-conservative systems are discussed at length. Various physical systems of interest including the problem of radiating electron, theory of natural line width, spin-boson problem, scattering and trapping of heavy ions and optical potential models of nuclear reactions are considered and solved.
Remains accessible but incorporates a rigorous mathematical treatment with clarity and emphasizing a contemporary style and a rejuvenated approach Presents a student-friendly and self-contained structure Balances theory and worked examples
This book is meant as an introduction to graphene plasmonics and aims at the advanced undergraduate and graduate students entering the field of plasmonics in graphene. In it different theoretical methods are introduced, starting with an elementary description of graphene plasmonics and evolving towards more advanced topics. This book is essentially self-contained and brings together a number of different topics about the field that are scattered in the vast literature. The text is composed of eleven chapters and of a set of detailed appendices. It can be read in two different ways: Reading only the chapters to get acquainted with the field of plasmonics in graphene or reading the chapters and studying the appendices to get a working knowledge of the topic. The study of the material in this book will bring the students to the forefront of the research in this field.
This book provides a tutorial on quantum communication networks. The authors discuss current paradigm shifts in communication networks that are needed to add computing and storage to the simple transport ideas of prevailing networks. They show how these 'softwarized' solutions break new grounds to reduce latency and increase resilience. The authors discuss how even though these solutions have inherent problems due to introduced computing latency and energy consumption, the problems can be solved by hybrid classical-quantum communication networks. The book brings together quantum networking, quantum information theory, quantum computing, and quantum simulation.
Continued advances in the precision manufacturing of new structures at the nanometer scale have provided unique opportunities for device physics. This book sets out to summarize those elements of classical mechanics most applicable for scientists and engineers studying device physics. Supplementary MATLAB (R) materials are available for all figures generated numerically.
Gives basics of Fortran and Numerical Calculation. The book includes Fortran codes and also gives access to author's website. Summarizes history of Quantum Mechanics through the most important papers. Presents detailed mathematical basis of Quantum Mechanics and Quantum Chemistry. Includes proposed exercises and do-it-yourself activities.
This book highlights the novel research in quantum memory networking, especially quantum memories based on cold atomic ensembles. After discussing the frontiers of quantum networking research and building a DLCZ-type quantum memory with cold atomic ensemble, the author develops the ring cavity enhanced quantum memory and demonstrates a filter-free quantum memory, which significantly improves the photon-atom entanglement. The author then realizes for the first time the GHZ-type entanglement of three separate quantum memories, a building block of 2D quantum repeaters and quantum networks. The author also combines quantum memories and time-resolved measurements, and reports the first multiple interference of three single photons with different colors. The book is of good reference value for graduate students, researchers, and technical personnel in quantum information sciences. |
![]() ![]() You may like...
Bootstrap Methods - With Applications in…
Gerhard Dikta, Marsel Scheer
Hardcover
R3,143
Discovery Miles 31 430
Security Careers - Skills, Compensation…
Stephen W. Walker, James E. Foushee
Paperback
R1,916
Discovery Miles 19 160
Open Data for Sustainable Community…
Neha Sharma, Santanu Ghosh, …
Hardcover
R4,934
Discovery Miles 49 340
Introduction to Data Systems - Building…
Thomas Bressoud, David White
Hardcover
R2,423
Discovery Miles 24 230
|