Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Physics > Quantum physics (quantum mechanics)
ICOLS features the latest developments in the area of laser spectroscopy and related topics in atomic, molecular, and optical physics and other disciplines. The talks covered a broad range of exciting physics, such as precision tests of fundamental symmetries with atoms and molecules, atomic clocks, quantum many-body physics with ultra-cold atoms, atom interferometry, quantum information science with photons and ions, quantum optics, and ultra-fast atomic and molecular dynamics.The conference program comprised 14 sessions with 9 keynote addresses, 25 invited talks, and 3 hot topic talks. The speakers came from 15 different countries. Ever since the ICOLS conference series originated in 1973, its proceedings have been highly valued by many for capturing important developments in the field and offering the room to represent various aspects of specific research topics. The present volume contains some of the invited talks delivered at the conference.
Vladimir Naumovich Gribov is one of the creators of modern theoretical physics. The concepts and methods that Gribov has developed in the second half of the 20th century became cornerstones of the physics of high energy hadron interactions (relativistic theory of complex angular momenta, a notion of the vacuum pole - Pomeron, effective reggeon field theory), condensed matter physics (critical phenomena), neutrino oscillations, and nuclear physics.His unmatched insights into the nature of the quantum field theory helped to elucidate, in particular, the origin of classical solutions (instantons), quantum anomalies, specific problems in quantization of non-Abelian fields (Gribov anomalies, Gribov horizon), and the role of light quarks in the color confinement phenomenon.The fifth memorial workshop which marked Gribov's 85th birthday took place at the Landau Institute for Theoretical Physics, Russia, in June 2015. Participants of the workshop who came to Chernogolovka from different parts of the world presented new results of studies of many challenging theoretical physics problems across a broad variety of topics, and shared memories about their colleague, great teacher and friend.This book is a collection of the presented talks and contributed papers, which affirm the everlasting impact of Gribov's scientific heritage upon the physics of the 21st century.
The book is designed for a one-semester graduate course in quantum mechanics for electrical engineers. It can also be used for teaching quantum mechanics to graduate students in materials science and engineering departments as well as to applied physicists. The selection of topics in the book is based on their relevance to engineering applications. The book provides the theoretical foundation for graduate courses in quantum optics and lasers, semiconductor electronics, applied superconductivity and quantum computing. It covers (along with traditional subjects) the following topics: resonant and Josephson tunneling; Landau levels and their relation to the integer quantum Hall effect; effective mass Schrodinger equation and semi-classical transport; quantum transitions in two-level systems; Berry phase and Berry curvature; density matrix and optical Bloch equation for two-level systems; Wigner function and quantum transport; exchange interaction and spintronic.
The book is designed for a one-semester graduate course in quantum mechanics for electrical engineers. It can also be used for teaching quantum mechanics to graduate students in materials science and engineering departments as well as to applied physicists. The selection of topics in the book is based on their relevance to engineering applications. The book provides the theoretical foundation for graduate courses in quantum optics and lasers, semiconductor electronics, applied superconductivity and quantum computing. It covers (along with traditional subjects) the following topics: resonant and Josephson tunneling; Landau levels and their relation to the integer quantum Hall effect; effective mass Schrodinger equation and semi-classical transport; quantum transitions in two-level systems; Berry phase and Berry curvature; density matrix and optical Bloch equation for two-level systems; Wigner function and quantum transport; exchange interaction and spintronic.
Based on lectures held at the 8th edition of the series of summer schools in Villa de Leyva since 1999, this book presents an introduction to topics of current interest at the interface of geometry, algebra, analysis, topology and theoretical physics. It is aimed at graduate students and researchers in physics or mathematics, and offers an introduction to the topics discussed in the two weeks of the summer school: operator algebras, conformal field theory, black holes, relativistic fluids, Lie groupoids and Lie algebroids, renormalization methods, spectral geometry and index theory for pseudo-differential operators.
Unravel the secrets of the universe and untangle cutting-edge physics Yes, you actually can understand quantum physics! String Theory For Dummies is a beginner's guide, and we make it fun to find out about the all the recent trends and theories in physics, including the basics of string theory, with friendly explanations. Build a foundation of physics knowledge, understand the various string theories and the math behind them, and hear what the opponents to string theory have to say. It's an exciting time to be alive in advanced physics, and this updated edition covers what's new in the string world--the Large Hadron Collider, the Higgs Boson, gravitational waves, and lots of other big headlines. Unleash your inner armchair physicist with String Theory For Dummies. Brush up on the basics of physics and the approachable math needed to understand string theory Meet the scientists who discovered string theory and continue to make waves (and particles) in the physics world Understand what it's all about with real-world examples and explanations Learn why string theory is called "The Theory of Everything"--and what it means for technology and the future Aspiring scientists or life-long learners will both be able to gain valuable information from this book. This accessible intro into string theory is for the theorists inside anyone.
The aim of this book is to teach undergraduate college or university students, and adults interested in astronomy and astrophysics, the basic mathematics and physics concepts needed to understand the evolution of the universe, and based on this to teach the astrophysical theories behind evolution from the very early times to the present. The book does not require extensive knowledge of mathematics, like calculus, and includes material that explains concepts such as velocity, acceleration, and force. Based on this, fascinating topics such as Dark Matter, measuring Dark Energy via supernovae velocities, and the creation of mass via the Higgs mechanism are explained. All college students with an interest in science, especially astronomy, without extensive mathematical backgrounds, should be able to use and learn from this book. Adults interested in topics like Dark Energy, the Higgs boson, and detection of Gravitational Waves, which are in the news, can make use of this book as well.
This textbook provides a concise yet comprehensive introduction to the principles, concepts, and methods of quantum mechanics. It covers the basic building blocks of quantum mechanics theory and applications, illuminated throughout by physical insights and examples of quantum mechanics, such as the one-dimensional eigen-problem, the harmonic oscillator, the Aharonov-Bohm effect, Landau levels, the hydrogen atom, the Landau-Zener transition and the Berry phase. This self-contained textbook is suitable for junior and senior undergraduate students, in addition to advanced students who have studied general physics (including classical mechanics, electromagnetics, and atomic physics), calculus, and linear algebra. Key features: Presents an accessible and concise treatment of quantum mechanics Contains a wealth of case studies and examples to illustrate concepts Based off the author's established course and lecture notes
This book provides an interdisciplinary approach to one of the most fascinating and important open questions in science: What is quantum mechanics really talking about? In the last decades quantum mechanics has given rise to a new quantum technological era, a revolution taking place today especially within the field of quantum information processing; which goes from quantum teleportation and cryptography to quantum computation. Quantum theory is probably our best confirmed physical theory. However, in spite of its great empirical effectiveness it stands today still without a universally accepted physical representation that allows us to understand its relation to the world and reality.The novelty of the book comes from the multiple perspectives put forward by top researchers in quantum mechanics, from Europe as well as North and South America, discussing the meaning and structure of the theory of quanta. The book comprises in a balanced manner physical, philosophical, logical and mathematical approaches to quantum mechanics and quantum information. Going from quantum superpositions and entanglement to dynamics and the problem of identity; from quantum logic, computation and quasi-set theory to the category approach and teleportation; from realism and empiricism to operationalism and instrumentalism; the book considers from different angles some of the most intriguing questions in the field.From Buenos Aires to Brussels and Cagliari, from Florence to Florianopolis, the interaction between different groups is reflected in the many different articles. This book is interesting not only to the specialists but also to the general public attempting to get a grasp on some of the most fundamental questions of present quantum physics.
David Bohm is one of the foremost scientific thinkers of today and one of the most distinguished scientists of his generation. His challenge to the conventional understanding of quantum theory has led scientists to reexamine what it is they are going and his ideas have been an inspiration across a wide range of disciplines. Quantum Implications is a collection of original contributions by many of the world' s leading scholars and is dedicated to David Bohm, his work and the issues raised by his ideas. The contributors range across physics, philosophy, biology, art, psychology, and include some of the most distinguished scientists of the day. There is an excellent introduction by the editors, putting Bohm's work in context and setting right some of the misconceptions that have persisted about the work of David Bohm
This book addresses an interesting area of quantum computation called quantum walks, which play an important role in building quantum algorithms, in particular search algorithms. Quantum walks are the quantum analogue of classical random walks. It is known that quantum computers have great power for searching unsorted databases. This power extends to many kinds of searches, particularly to the problem of finding a specific location in a spatial layout, which can be modeled by a graph. The goal is to find a specific node knowing that the particle uses the edges to jump from one node to the next. This book is self-contained with main topics that include: Grover's algorithm, describing its geometrical interpretation and evolution by means of the spectral decomposition of the evolution operator Analytical solutions of quantum walks on important graphs like line, cycles, two-dimensional lattices, and hypercubes using Fourier transforms Quantum walks on generic graphs, describing methods to calculate the limiting distribution and mixing time Spatial search algorithms, with emphasis on the abstract search algorithm (the two-dimensional lattice is used as an example) Szedgedy's quantum-walk model and a natural definition of quantum hitting time (the complete graph is used as an example) The reader will benefit from the pedagogical aspects of the book, learning faster and with more ease than would be possible from the primary research literature. Exercises and references further deepen the reader's understanding, and guidelines for the use of computer programs to simulate the evolution of quantum walks are also provided.
We have lost one of the giants of the twentieth century physics when Yoichiro Nambu passed away in July, 2015, at the age of 94.Today's Standard Model, though still incomplete in many respects, is the culmination of the most successful theory of the Universe to date, and it is built upon foundations provided by discoveries made by Nambu in the 1960s: the mechanism of spontaneously broken symmetry in Nature (with G Jona-Lasinio) and the hidden new SU(3) symmetry of quarks and gluons (with M-Y Han).In this volume honoring Nambu's memory, World Scientific Publishing presents a unique collection of papers written by his former colleagues, collaborating researchers and former students and associates, not only citing Nambu's great contributions in physics but also many personal and private reminiscences, some never told before. This volume also contains the very last scientific writing by Professor Nambu himself, discussing the development of particle physics.This book is a volume for all who benefited not only from Nambu's contributions toward understanding the Universe but also his warm and kind persona. It is a great addition to the history of contemporary physics.
We have lost one of the giants of the twentieth century physics when Yoichiro Nambu passed away in July, 2015, at the age of 94.Today's Standard Model, though still incomplete in many respects, is the culmination of the most successful theory of the Universe to date, and it is built upon foundations provided by discoveries made by Nambu in the 1960s: the mechanism of spontaneously broken symmetry in Nature (with G Jona-Lasinio) and the hidden new SU(3) symmetry of quarks and gluons (with M-Y Han).In this volume honoring Nambu's memory, World Scientific Publishing presents a unique collection of papers written by his former colleagues, collaborating researchers and former students and associates, not only citing Nambu's great contributions in physics but also many personal and private reminiscences, some never told before. This volume also contains the very last scientific writing by Professor Nambu himself, discussing the development of particle physics.This book is a volume for all who benefited not only from Nambu's contributions toward understanding the Universe but also his warm and kind persona. It is a great addition to the history of contemporary physics.
Written for use in teaching and for self-study, this book provides a comprehensive and pedagogical introduction to groups, algebras, geometry, and topology. It assimilates modern applications of these concepts, assuming only an advanced undergraduate preparation in physics. It provides a balanced view of group theory, Lie algebras, and topological concepts, while emphasizing a broad range of modern applications such as Lorentz and Poincare invariance, coherent states, quantum phase transitions, the quantum Hall effect, topological matter, and Chern numbers, among many others. An example based approach is adopted from the outset, and the book includes worked examples and informational boxes to illustrate and expand on key concepts. 344 homework problems are included, with full solutions available to instructors, and a subset of 172 of these problems have full solutions available to students.
This book is meant as an introduction to graphene plasmonics and aims at the advanced undergraduate and graduate students entering the field of plasmonics in graphene. In it different theoretical methods are introduced, starting with an elementary description of graphene plasmonics and evolving towards more advanced topics. This book is essentially self-contained and brings together a number of different topics about the field that are scattered in the vast literature. The text is composed of eleven chapters and of a set of detailed appendices. It can be read in two different ways: Reading only the chapters to get acquainted with the field of plasmonics in graphene or reading the chapters and studying the appendices to get a working knowledge of the topic. The study of the material in this book will bring the students to the forefront of the research in this field.
This book is meant as an introduction to graphene plasmonics and aims at the advanced undergraduate and graduate students entering the field of plasmonics in graphene. In it different theoretical methods are introduced, starting with an elementary description of graphene plasmonics and evolving towards more advanced topics. This book is essentially self-contained and brings together a number of different topics about the field that are scattered in the vast literature. The text is composed of eleven chapters and of a set of detailed appendices. It can be read in two different ways: Reading only the chapters to get acquainted with the field of plasmonics in graphene or reading the chapters and studying the appendices to get a working knowledge of the topic. The study of the material in this book will bring the students to the forefront of the research in this field.
'It may be that a real synthesis of quantum and relativity theories requires not just technical developments but radical conceptual renewal.'J S BellBeyond Peaceful Coexistence: The Emergence of Space, Time and Quantum brings together leading academics in mathematics and physics to address going beyond the 'peaceful coexistence' of space-time descriptions (local and continuous ones) and quantum events (discrete and non-commutative ones). Formidable challenges waiting beyond the Standard Model require a new semantic consistency within the theories in order to build new ways of understanding, working and relating to them. The original A. Shimony meaning of the peaceful coexistence (the collapse postulate and non-locality) appear to be just the tip of the iceberg in relation to more serious fundamental issues across physics as a whole.Chapters in this book present perspectives on emergent, discrete, geometrodynamic and topological approaches, as well as a new interpretative spectrum of quantum theories after Copenhagen, discrete time theories, time-less approaches and 'super-fluid' pictures of space-time.As well as stimulating further research among established theoretical physicists, the book can also be used in courses on the philosophy and mathematics of theoretical physics.
Quantum gravity is the name given to a theory that unites general relativity - Einstein's theory of gravitation and spacetime - with quantum field theory, our framework for describing non-gravitational forces. The Structural Foundations of Quantum Gravity brings together philosophers and physicists to discuss a range of conceptual issues that surface in the effort to unite these theories, focusing in particular on the ontological nature of the spacetime that results. Although there has been a great deal written about quantum gravity from the perspective of physicists and mathematicians, very little attention has been paid to the philosophical aspects. This volume closes that gap, with essays written by some of the leading researchers in the field. Individual papers defend or attack a structuralist perspective on the fundamental ontologies of our physical theories, which offers the possibility of shedding new light on a number of foundational problems. It is a book that will be of interest not only to physicists and philosophers of physics but to anyone concerned with foundational issues and curious to explore new directions in our understanding of spacetime and quantum physics.
The investigation of discrete symmetries is a fascinating subject which has been central to the agenda of physics research for 50 years, and has been the target of many experiments, ongoing and in preparation, all over the world. This book approaches the subject from a somewhat less traditional angle: while being self-contained and suitable to the reader who wants to acquire a solid knowledge of the topic, it puts more emphasis on the experimental aspects of the field, trying to provide a wider picture than usual and to convey the intellectual challenge of experimental physics. The book includes the related connection to phenomenology, a purpose for which the precision experiments in this field - often rather elegant and requiring a good amount of ingenuity - are very well suited. The book discusses discrete symmetries (parity, charge conjugation, time reversal, and of course CP symmetry) in microscopic (atomic, nuclear, and particle) physics, and includes the detailed description of some key or representative experiments. The book discusses their principles and challenges more than the historical development. The main past achievements and the most recent developments are both included. The level goes from introductory to advanced. While mainly addressed to graduate students, the book can also be useful to undergraduates (by skipping some of the more advanced sections, and utilizing the brief introductions to some topics in the appendices), and to young researchers looking for a wider modern overview of the issues related to CP symmetry.
This graduate textbook provides a unified view of quantum information theory. Clearly explaining the necessary mathematical basis, it merges key topics from both information-theoretic and quantum- mechanical viewpoints and provides lucid explanations of the basic results. Thanks to this unified approach, it makes accessible such advanced topics in quantum communication as quantum teleportation, superdense coding, quantum state transmission (quantum error-correction) and quantum encryption. Since the publication of the preceding book Quantum Information: An Introduction, there have been tremendous strides in the field of quantum information. In particular, the following topics - all of which are addressed here - made seen major advances: quantum state discrimination, quantum channel capacity, bipartite and multipartite entanglement, security analysis on quantum communication, reverse Shannon theorem and uncertainty relation. With regard to the analysis of quantum security, the present book employs an improved method for the evaluation of leaked information and identifies a remarkable relation between quantum security and quantum coherence. Taken together, these two improvements allow a better analysis of quantum state transmission. In addition, various types of the newly discovered uncertainty relation are explained. Presenting a wealth of new developments, the book introduces readers to the latest advances and challenges in quantum information. To aid in understanding, each chapter is accompanied by a set of exercises and solutions.
The book explores the variety of meanings of contextuality across different disciplines, with the emphasis on quantum physics and on psychology.
This book is a broad-based text intended to help the growing student body interested in constructing and applying methods of effective field theory to solve problems in their research. It begins with a review of using symmetries to identify the relevant degrees of freedom in a problem, and then presents a variety of methods that can be used to construct various effective theories. A detailed discussion of canonical applications of effective field theory techniques with increasing complexity is given, including Fermi's weak interaction, heavy-quark effective theory, and soft-collinear effective theory. Applications of these techniques to study physics beyond the standard model, dark matter, and quantum and classical gravity are explored. Although most examples come from questions in high-energy physics, many of the methods can also be applied in condensed-matter settings. Appendices include various factoids from group theory and other topics that are used throughout the text, in an attempt to make the book self-contained.
This book aims to provide a quick pedagogical introduction to path integrals. It contains original material that never before has appeared in a book, for example the path integrals for the Wigner functions and for Classical Mechanics. This application to Classical Mechanics connects different fields like Hamiltonian mechanics and differential geometry, so the book is suitable for students and researchers from various disciplines.
This book aims to provide a quick pedagogical introduction to path integrals. It contains original material that never before has appeared in a book, for example the path integrals for the Wigner functions and for Classical Mechanics. This application to Classical Mechanics connects different fields like Hamiltonian mechanics and differential geometry, so the book is suitable for students and researchers from various disciplines.
Published in 1934, this monograph was one of the first introductory accounts of the principles which form the physical basis of the Quantum Theory, considered as a branch of mathematics. The exposition is restricted to a discussion of general principles and does not attempt detailed application to the wide domain of atomic physics, although a number of special problems are considered in elucidation of the principles. The necessary fundamental mathematical methods - the theory of linear operators and of matrics - are developed in the first chapter so this could introduce anyone to the new theory. This is an interesting snapshot of scientific history. |
You may like...
Practical Arnis Stick Fighting - Vortex…
Sam Fury, Eliana Bastida
Hardcover
R538
Discovery Miles 5 380
The Art of the Straight Line - My Tai…
Lou Reed, Laurie Anderson
Hardcover
R663
Discovery Miles 6 630
|