![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Quantum physics (quantum mechanics)
The structural aspects of composite quantum systems in the foundation, interpretation and application of quantum theory is an increasingly prominent topic of physics research. As an emerging field, it seeks to understand the origins of the classical world of experience from the quantum level.Quantum Structural Studies presents conceptual fundamentals and mathematical methods for investigating the structuring of quantum systems into subsystems. Split into four sections, the topics covered include the historical and philosophical aspects of quantum structures, specific interpretive approaches and ontologies, and alternative methodological approaches to quantum mechanics. Questions addressed are: Specialists, graduate students and researchers seeking an introduction to the field of emergent structures and new directions for research and experimentation can use this book to find up-to-date representative texts and reviews.
The functional formulation of quantum mechanics and relativistic quantum field theories are widely studied subjects. Nevertheless, certain aspects of this formulation are frequently overlooked, in spite of their relevance from a structural point of view. This book aims to fill up this gap. The non-relativistic regime has been found particularly appropriate for these purposes.
Featuring detailed explanations of the major algorithms used in quantum Monte Carlo simulations, this is the first textbook of its kind to provide a pedagogical overview of the field and its applications. The book provides a comprehensive introduction to the Monte Carlo method, its use, and its foundations, and examines algorithms for the simulation of quantum many-body lattice problems at finite and zero temperature. These algorithms include continuous-time loop and cluster algorithms for quantum spins, determinant methods for simulating fermions, power methods for computing ground and excited states, and the variational Monte Carlo method. Also discussed are continuous-time algorithms for quantum impurity models and their use within dynamical mean-field theory, along with algorithms for analytically continuing imaginary-time quantum Monte Carlo data. The parallelization of Monte Carlo simulations is also addressed. This is an essential resource for graduate students, teachers, and researchers interested in quantum Monte Carlo techniques.
Covers the State of the Art in Superfluidity and Superconductivity Superfluid States of Matter addresses the phenomenon of superfluidity/superconductivity through an emergent, topologically protected constant of motion and covers topics developed over the past 20 years. The approach is based on the idea of separating universal classical-field superfluid properties of matter from the underlying system's "quanta." The text begins by deriving the general physical principles behind superfluidity/superconductivity within the classical-field framework and provides a deep understanding of all key aspects in terms of the dynamics and statistics of a classical-field system. It proceeds by explaining how this framework emerges in realistic quantum systems, with examples that include liquid helium, high-temperature superconductors, ultra-cold atomic bosons and fermions, and nuclear matter. The book also offers several powerful modern approaches to the subject, such as functional and path integrals. Comprised of 15 chapters, this text: Establishes the fundamental macroscopic properties of superfluids and superconductors within the paradigm of the classical matter field Deals with a single-component neutral matter field Considers fundamentals and properties of superconductors Describes new physics of superfluidity and superconductivity that arises in multicomponent systems Presents the quantum-field perspective on the conditions under which classical-field description is relevant in bosonic and fermionic systems Introduces the path integral formalism Shows how Feynman path integrals can be efficiently simulated with the worm algorithm Explains why nonsuperfluid (insulating) ground states of regular and disordered bosons occur under appropriate conditions Explores superfluid solids (supersolids) Discusses the rich dynamics of vortices and various aspects of superfluid turbulence at T 0 Provides account of BCS theory for the weakly interacting Fermi gas Highlights and analyzes the most crucial developments that has led to the current understanding of superfluidity and superconductivity Reviews the variety of superfluid and superconducting systems available today in nature and the laboratory, as well as the states that experimental realization is currently actively pursuing
This book discusses the main concepts of the Standard Model of elementary particles in a compact and straightforward way. The theoretical results are derived using the physical phenomena as a starting point. This inductive approach allows a deep understanding of the methods used for solving problems in this field. This second, revised edition is expanded with biographical notes contextualizing the main results in quantum field theory.
This book presents the wide range of topics in two-dimensional physics of quantum Hall systems, especially fractional quantum Hall states. It covers the fundamental problems of two-dimensional quantum statistics in terms of topology and the corresponding braid group formalism for composite fernions, and the main formalism used in many-body quantum Hall theories, the Chern-Simons theory. Numerical studies are introduced for spherical systems and the composite fermion theory is tested. The book introduces the concept of the hierarchy of condensed states, the BCS paired Hall state, and multi-component quantum Hall systems and spin quantum Hall systems.
Organisms endowed with life show a sense of awareness, interacting with and learning from the universe in and around them. Each level of interaction involves transfer of information of various kinds, and at different levels. Each thread of information is interlinked with the other, and woven together, these constitute the universe - both the internal self and the external world - as we perceive it. They are, figuratively speaking, Nature's longest threads. This volume reports inter-disciplinary research and views on information and its transfer at different levels of organization by reputed scientists working on the frontier areas of science. It is a frontier where physics, mathematics and biology merge seamlessly, binding together specialized streams such as quantum mechanics, dynamical systems theory, and mathematics. The topics would interest a broad cross-section of researchers in life sciences, physics, cognition, neuroscience, mathematics and computer science, as well as interested amateurs, familiarizing them with frontier research on understanding information transfer in living systems.
This authoritative biography addresses the life and work of the quantum physicist David Bohm. Although quantum physics is considered the soundest physical theory, its strange and paradoxical features have challenged - and continue to challenge - even the brightest thinkers. David Bohm dedicated his entire life to enhancing our understanding of quantum mysteries, in particular quantum nonlocality. His work took place at the height of the cultural/political upheaval in the 1950's, which led him to become the most notable American scientist to seek exile in the last century. The story of his life is as fascinating as his ideas on the quantum world are appealing.
Gets right to the point with step-by-step guidance on solving physics problems. Covers all topics in standard general physics courses in the same sequence. Keeps learning about physics fun and engaging through the story of dinosaurs being tested on their knowledge for a final challenge (deflecting an asteroid headed to Earth!). Enables the reader to quickly flip through and locate steps needed for a particular problem. Includes tons of easy to follow diagrams and worked solutions.
All modern books on Einstein emphasize the genius of his relativity theory and the corresponding corrections and extensions of the ancient space-time concept. However, Einstein s opposition to the use of probability in the laws of nature and particularly in the laws of quantum mechanics is criticized and often portrayed as outdated. The author of Einstein Was Right takes a different view and shows that Einstein created a "Trojan horse" ready to unleash forces against the use of probability as a basis for the laws of nature. Einstein warned that the use of probability would, in the final analysis, lead to "spooky" actions and mysterious instantaneous influences at a distance. John Bell pulled Einstein s Trojan horse into the castle of physics. He developed a theory that, together with experimental results of Aspect, Zeilinger, and others, "proves" the existence of quantum non-localities, instantaneous influences. These have indeed the nature of what Einstein labeled as "spooky." The book Einstein Was Right shows that Bell was not aware of the special role that time and space-time play in any rigorous probability theory. As a consequence, his formalism is not general enough to be applied to the Aspect-Zeilinger type of experiments and his conclusions about the existence of instantaneous influences at a distance are incorrect. This fact suggests a world view that is less optimistic about claims that teleportation and influences at a distance could open new horizons and provide the possibility of quantum computing. On the positive side, however, and as compensation, we are assured that the space-time picture of mankind developed over millions of years and perfected by Einstein, is still able to cope with the phenomena that nature presents us on the atomic and sub-atomic level and that the "quantum weirdness" may be explainable and understandable after all. "
This book presents an upper level text on semilinear evolutionary partial differential equations aimed at the graduate and postgraduate level. Cazenave and Haraux present in a self-contained way, the typical basic properties of solutions to semi-linear evolutionary partial differential equations, with special emphasis on global properties. The main objective of this book is to provide a didactic approach to the subject , and the main readership will be graduate students in mathematical analysis, as well as professional applied mathematicians.
This book is an original first approach to quantum physics, the core of modern physics. It combines the competence of a well-known researcher in quantum information science and the freshness in style of two high school students. Quantum physics is known to be challenging for two reasons: it describes counter-intuitive phenomena and employs rather advanced mathematics. The description of "traditional" quantum phenomena (the structure of atoms and molecules, the properties of solids, the zoology of sub-atomic particles) does indeed involve the whole formalism. However, some other striking phenomena, somehow the most "typically quantum" ones, can be described using only high school mathematical skills. This approach exploits this fact, thus making it possible for a beginner to tackle mind-boggling experiments like teleportation and the violation of Bell's inequalities, and practice notions like superposition, entanglement and decoherence.
The quantum measurement problem is one of the most fascinating and challenging topics in physics both theoretically and experimentally. It involves deep questions and the use of very sophisticated and elegant techniques. After analyzing the fundamental principles of quantum mechanics and of the Copenhagen interpretation, this book reviews the most important approaches to the measurement problem and rigorously reformulates the "collapse of the wave function" by measurement, as a dephasing process quantitatively characterized by an order parameter (called the decoherence parameter), according to the many-Hilbert-space approach to the problem.The book deals not only with the measurement processes (including imperfect measurements) but also with related interference and mesoscopic phenomena - by means of general arguments - of solvable models and of numerical simulations. The quantum Zeno effect and the issue of irreversibility are also discussed.
This concise, accessible text provides a thorough introduction to
quantum computing - an exciting emergent field at the interface of
the computer, engineering, mathematical and physical sciences.
Aimed at advanced undergraduate and beginning graduate students in
these disciplines, the text is
This thesis represents one of the most comprehensive and in-depth studies of the use of Lorentz-boosted hadronic final state systems in the search for signals of Supersymmetry conducted to date at the Large Hadron Collider. A thorough assessment is performed of the observables that provide enhanced sensitivity to new physics signals otherwise hidden under an enormous background of top quark pairs produced by Standard Model processes. This is complemented by an ingenious analysis optimization procedure that allowed for extending the reach of this analysis by hundreds of GeV in mass of these hypothetical new particles. Lastly, the combination of both deep, thoughtful physics analysis with the development of high-speed electronics for identifying and selecting these same objects is not only unique, but also revolutionary. The Global Feature Extraction system that the author played a critical role in bringing to fruition represents the first dedicated hardware device for selecting these Lorentz-boosted hadronic systems in real-time using state-of-the-art processing chips and embedded systems.
Hans Juergen Wirth, a leading German psychoanalyst and editor of the journal Psychosozial, brings cultural breadth, historical perspective, and analytic astuteness to bear in considering the "collective trauma" of 9/11. His meditation, which brings into its compass the psychic structure of suicide bombers and the psycho-political causes and consequences of the Iraq war, is especially insightful in considering the psychological meaning of 9/11 for the world outside the U.S. In complementary forays into psyche and politics, Wirth explores the relationship of xenophobia and violence; the story of Jewish analysts who emigrated from Nazi Germany to the United States; the idea of man in psychoanalysis; and the family dynamics that sustain the AIDS phobia. These wonderfully illuminating essays, both cautionary and constructive, show how clinical experience with the unconscious processes of violence, traumatization, and destructiveness can be foundational to new political strategies for dealing with collective violence.
This is an introduction to the mathematical foundations of quantum field theory, using operator algebraic methods and emphasizing the link between the mathematical formulations and related physical concepts. It starts with a general probabilistic description of physics, which encompasses both classical and quantum physics. The basic key physical notions are clarified at this point. It then introduces operator algebraic methods for quantum theory, and goes on to discuss the theory of special relativity, scattering theory, and sector theory in this context.
From the early wave-particle arguments to the mathematical theory of electromagnetism to Einstein s work on the quantization of light, different descriptions of what constitutes light have existed for over 300 years. Light The Physics of the Photon examines the photon phenomenon from several perspectives. It demonstrates the importance of studying the photon as a concept belonging to a global vacuum (matter-free space). Divided into eight parts, the book begins with exploring aspects of classical optics in a global vacuum on the basis of free-space Maxwell equations. It then describes light rays and geodesics and presents a brief account of the Maxwell theory in general relativity. After discussing the theory of photon wave mechanics, the author gives a field-quantized description of the electromagnetic field, emphasizing single-photon quantum optics in Minkowskian space. He next focuses on photon physics in the rim zone of matter, paying particular attention to photon emission processes. He also takes a closer look at the photon source domain and field propagators, which conveniently describe the photon field propagation in the vicinity of and far from the electronic source domain. The last two parts discuss the photon vacuum and light quanta in Minkowskian space as well as two-photon entanglement, which is associated with the biphoton in space-time."
Containing the proceedings of the symposium held by the American Academy of Arts and Sciences to celebrate the 100th anniversary of the birth of Niels Bohr, this collection was first published in 1988. More than any other individual, Bohr was responsible for the development of quantum mechanics and for many of its applications in the pursuit of fundamental understanding of physical reality. In addition to his unique role in the discovery and elucidation of quantum theory, Bohr led the study of the fission of nuclei and was greatly concerned with the impact of the existence of the atomic bomb in the post-World War II era. This unique volume provides a panoramic view of modern physics, some of the philosophical issues associated with quantum theory, the impact of this momentous scientific development on the political circumstance of the Cold War Era and the qualities of a superlative scientist.
Dimensional and order-of-magnitude estimates are practiced by almost everybody but taught almost nowhere. When physics students engage in their first theoretical research project, they soon learn that exactly solvable problems belong only to textbooks, that numerical models are long and resource consuming, and that "something else" is needed to quickly gain insight into the system they are going to study. Qualitative methods are this "something else", but typically, students have never heard of them before.The aim of this book is to teach the craft of qualitative analysis using a set of problems, some with solutions and some without, in advanced undergraduate and beginning graduate Quantum Mechanics. Examples include a dimensional analysis solution for the spectrum of a quartic oscillator, simple WKB formulas for the matrix elements of a coordinate in a gravitational well, and a three-line-long estimate for the ionization energy of atoms uniformly valid across the whole periodic table. The piece de resistance in the collection is a series of dimensional analysis questions in Integrable Nonlinear Partial Differential Equations with no dimensions existing a priori. Solved problems include the relationship between the size and the speed of solitons of the Korteweg-de Vries equation and an expression for the oscillation period of a Nonlinear Schroedinger breather as a function of its width.
Among the most fascinating and rapidly developing areas in modem physics is the study of cosmological phenomena such as black holes, the cosmic microwave background, and the inflationary nature of the universe. Recent theoretical and experimental developments in these fields have significantly increased our understanding of these exciting and important topics. In order to allow the reader fully to understand these new developments, Quantum Theory, Black Holes and Inflation begins by introducing the theory of quantised fields in a mathematically rigorous fashion. Concentrating on the path integral approach to quantum field theory, the essential mathematical tools are developed to allow the reader to get to grips with the ways in which the theory has been successfully applied to a number of areas in modern cosmology. The second half of Quantum Theory, Black Holes and Inflation explains a number of the most successful applications to date, including the theory of black hole evaporation and thermodynamics, and the theory of quantum effects in the inflationary model of the universe. Quantum Theory, Black Holes and Inflation will be of great interest to all those involved in these vibrant areas of research. Its combination of mathematical background and the most successful modern applications of the theory make it accessible and interesting to both postgraduate students and more experienced researchers in the field.
This book is an original first approach to quantum physics, the core of modern physics. It combines the competence of a well-known researcher in quantum information science and the freshness in style of two high school students. Quantum physics is known to be challenging for two reasons: it describes counter-intuitive phenomena and employs rather advanced mathematics. The description of "traditional" quantum phenomena (the structure of atoms and molecules, the properties of solids, the zoology of sub-atomic particles) does indeed involve the whole formalism. However, some other striking phenomena, somehow the most "typically quantum" ones, can be described using only high school mathematical skills. This approach exploits this fact, thus making it possible for a beginner to tackle mind-boggling experiments like teleportation and the violation of Bell's inequalities, and practice notions like superposition, entanglement and decoherence.
Highly topical and original monograph, introducing the author's work on the Riemann zeta function and its adelic interpretation of interest to a wide range of mathematicians and physicists.
In this largely nontechnical book, eminent physicists and philosophers address the philosophical impact of recent advances in quantum physics. These are shown to shed new light on profound questions about realism, determinism, causality or locality. The participants contribute in the spirit of an open and honest discussion, reminiscent of the time when science and philosophy were inseparable. After the editors' introduction, the next chapter reveals the strangeness of quantum mechanics and the subsequent discussions examine our notion of reality. The spotlight is then turned to the topic of decoherence. Bohm's theory is critically examined in two chapters, and the relational interpretation of quantum mechanics is likewise described and discussed. The penultimate chapter presents a proposal for resolving the measurement problem, and finally the topic of loop quantum gravity is presented by one of its founding fathers, Carlo Rovelli. The original presentations and discussions on which this volume is based took place under the auspices of the French "Academie des Sciences Morales et Politiques". The book will appeal to everybody interested in knowing how our description of the world is impacted by the results of the most powerful and successful theory that physicists have ever built.
Arising from a special session held at the 2010 North American Annual Meeting of the Association for Symbolic Logic, this volume is an international cross-disciplinary collaboration with contributions from leading experts exploring connections across their respective fields. Themes range from philosophical examination of the foundations of physics and quantum logic, to exploitations of the methods and structures of operator theory, category theory, and knot theory in an effort to gain insight into the fundamental questions in quantum theory and logic. The book will appeal to researchers and students working in related fields, including logicians, mathematicians, computer scientists, and physicists. A brief introduction provides essential background on quantum mechanics and category theory, which, together with a thematic selection of articles, may also serve as the basic material for a graduate course or seminar. |
![]() ![]() You may like...
Children's Language and Multilingualism…
Jane Simpson, Gillian Wigglesworth
Hardcover
R6,080
Discovery Miles 60 800
Modern Age Waste Water Problems…
Mohammad Oves, Mohammad Omaish Ansari, …
Hardcover
R3,077
Discovery Miles 30 770
|