![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Quantum physics (quantum mechanics)
This thesis represents one of the most comprehensive and in-depth studies of the use of Lorentz-boosted hadronic final state systems in the search for signals of Supersymmetry conducted to date at the Large Hadron Collider. A thorough assessment is performed of the observables that provide enhanced sensitivity to new physics signals otherwise hidden under an enormous background of top quark pairs produced by Standard Model processes. This is complemented by an ingenious analysis optimization procedure that allowed for extending the reach of this analysis by hundreds of GeV in mass of these hypothetical new particles. Lastly, the combination of both deep, thoughtful physics analysis with the development of high-speed electronics for identifying and selecting these same objects is not only unique, but also revolutionary. The Global Feature Extraction system that the author played a critical role in bringing to fruition represents the first dedicated hardware device for selecting these Lorentz-boosted hadronic systems in real-time using state-of-the-art processing chips and embedded systems.
This textbook presents various methods to deal with quantum many-body systems, mainly addressing interacting electrons. It focusses on basic tools to tackle quantum effects in macroscopic systems of interacting particles, and on fundamental concepts to interpret the behavior of such systems as revealed by experiments. The textbook starts from simple concepts like second quantization, which allows one to include the indistinguishability and statistics of particles in a rather simple framework, and linear response theory. Then, it gradually moves towards more technical and advanced subjects, including recent developments in the field. The diagrammatic technique is comprehensively discussed. Some of the advanced topics include Landau's Fermi liquid theory, Luttinger liquids, the Kondo effect, and the Mott transition. The ultimate goal of the book is to gain comprehension of physical quantities that are routinely measured experimentally and fully characterize the system, therefore it is useful for graduate students but also young researchers studying and investigating the theoretical aspects of condensed matter physics.
This book focuses on field theory and it covers subjects such as statistical mechanics, quantum field theory and their interrelation, continuous global symmetry, non-Abelian gauge fields, instantons and the quantum theory of loops, and quantum strings and random surfaces.
The Advanced School on Quantum Foundations and Open Quantum Systems was an exceptional combination of lectures. These comprise lectures in standard physics and investigations on the foundations of quantum physics.On the one hand it included lectures on quantum information, quantum open systems, quantum transport and quantum solid state. On the other hand it included lectures on quantum measurement, models for elementary particles, sub-quantum structures and aspects on the philosophy and principles of quantum physics.The special program of this school offered a broad outlook on the current and near future fundamental research in theoretical physics.The lectures are at the level of PhD students.
This book presents an upper level text on semilinear evolutionary partial differential equations aimed at the graduate and postgraduate level. Cazenave and Haraux present in a self-contained way, the typical basic properties of solutions to semi-linear evolutionary partial differential equations, with special emphasis on global properties. The main objective of this book is to provide a didactic approach to the subject , and the main readership will be graduate students in mathematical analysis, as well as professional applied mathematicians.
Quantum phenomena of many-particle systems are fascinating in their complexity and are consequently not fully understood and largely untapped in terms of practical applications. Ultracold gases provide a unique platform to build up model systems of quantum many-body physics with highly controlled microscopic constituents. In this way, many-body quantum phenomena can be investigated with an unprecedented level of precision, and control and models that cannot be solved with present day computers may be studied using ultracold gases as a quantum simulator.This book addresses the need for a comprehensive description of the most important advanced experimental methods and techniques that have been developed along with the theoretical framework in a clear and applicable format. The focus is on methods that are especially crucial in probing and understanding the many-body nature of the quantum phenomena in ultracold gases and most topics are covered both from a theoretical and experimental viewpoint, with interrelated chapters written by experts from both sides of research.Graduate students and post-doctoral researches working on ultracold gases will benefit from this book, as well as researchers from other fields who wish to gain an overview of the recent fascinating developments in this very dynamically evolving field. Sufficient level of both detailed high level research and a pedagogical approach is maintained throughout the book so as to be of value to those entering the field as well as advanced researchers. Furthermore, both experimentalists and theorists will benefit from the book; close collaboration between the two are continuously driving the field to a very high level and will be strengthened to continue the important progress yet to be made in the field.
The book originated in a series of lectures given at Liverpool in 2013 to a group that included postgraduate and undergraduate students and staff of the Physics Department. They followed from two very successful lectures given to the undergraduate Physical Society. It seemed that there was a very large interest among the students in investigating the foundations of physics in a way that was never done in physics courses, and was not available in books or other outlets. However, the idea was to create a framework in which students (and interested staff) could develop their own thinking relative to the ideas in the lectures. So it was important to create both conceptual and mathematical structures on the issues that are important at this level. The book has the right sort of technical content to allow for this development, but doesn't lose itself in excessive details. The ideal use for this book would be on postgraduate courses where students would be encouraged to think about the foundations in a way that is well beyond the superficial. However, a course on aspects of this material would also be valuable at the undergraduate level, where students could be stimulated into believing that creative thinking could solve the problems that emerge when we confront foundational problems.
Our understanding of the physical world was revolutionized in the twentieth century - the era of "modern physics". Two books by the second author entitled Introduction to Modern Physics: Theoretical Foundations and Advanced Modern Physics: Theoretical Foundations, aimed at the very best students, present the foundations and frontiers of today's physics. Many problems are included in these texts. A previous book by the current authors provides solutions to the over 175 problems in the first volume.A third volume Topics in Modern Physics: Theoretical Foundations has recently appeared, which covers several subjects omitted in the essentially linear progression in the previous two. This book has three parts: part 1 is on quantum mechanics, part 2 is on applications of quantum mechanics, and part 3 covers some selected topics in relativistic quantum field theory. Parts 1 and 2 follow naturally from the initial volume. The present book provides solutions to the over 135 problems in this third volume.The three volumes in this series, together with the solutions manuals, provide a clear, logical, self-contained, and comprehensive base from which students can learn modern physics. When finished, readers should have an elementary working knowledge in the principal areas of theoretical physics of the twentieth century.
All modern books on Einstein emphasize the genius of his relativity theory and the corresponding corrections and extensions of the ancient space-time concept. However, Einstein s opposition to the use of probability in the laws of nature and particularly in the laws of quantum mechanics is criticized and often portrayed as outdated. The author of Einstein Was Right takes a different view and shows that Einstein created a "Trojan horse" ready to unleash forces against the use of probability as a basis for the laws of nature. Einstein warned that the use of probability would, in the final analysis, lead to "spooky" actions and mysterious instantaneous influences at a distance. John Bell pulled Einstein s Trojan horse into the castle of physics. He developed a theory that, together with experimental results of Aspect, Zeilinger, and others, "proves" the existence of quantum non-localities, instantaneous influences. These have indeed the nature of what Einstein labeled as "spooky." The book Einstein Was Right shows that Bell was not aware of the special role that time and space-time play in any rigorous probability theory. As a consequence, his formalism is not general enough to be applied to the Aspect-Zeilinger type of experiments and his conclusions about the existence of instantaneous influences at a distance are incorrect. This fact suggests a world view that is less optimistic about claims that teleportation and influences at a distance could open new horizons and provide the possibility of quantum computing. On the positive side, however, and as compensation, we are assured that the space-time picture of mankind developed over millions of years and perfected by Einstein, is still able to cope with the phenomena that nature presents us on the atomic and sub-atomic level and that the "quantum weirdness" may be explainable and understandable after all. "
In this book we have solved the complicated problem of constructing upper bounds for many-time averages for the case of a fairly broad class of model systems with four-fermion interaction. The methods proposed in this book for solving this problem will undoubtedly find application not only for the model systems associated with the theory of superconductivity considered here. The theoretical methods developed in Chapters 1 and 2 are already applicable to a much broader class of model systems from statistical physics and the theory of elementary particles.
Starting with numerical algorithms resulting in new kinds of amazing fractal patterns on the sphere, this book describes the theory underlying these phenomena and indicates possible future applications. The book also explores the following questions:
Organisms endowed with life show a sense of awareness, interacting with and learning from the universe in and around them. Each level of interaction involves transfer of information of various kinds, and at different levels. Each thread of information is interlinked with the other, and woven together, these constitute the universe - both the internal self and the external world - as we perceive it. They are, figuratively speaking, Nature's longest threads. This volume reports inter-disciplinary research and views on information and its transfer at different levels of organization by reputed scientists working on the frontier areas of science. It is a frontier where physics, mathematics and biology merge seamlessly, binding together specialized streams such as quantum mechanics, dynamical systems theory, and mathematics. The topics would interest a broad cross-section of researchers in life sciences, physics, cognition, neuroscience, mathematics and computer science, as well as interested amateurs, familiarizing them with frontier research on understanding information transfer in living systems.
Hans Juergen Wirth, a leading German psychoanalyst and editor of the journal Psychosozial, brings cultural breadth, historical perspective, and analytic astuteness to bear in considering the "collective trauma" of 9/11. His meditation, which brings into its compass the psychic structure of suicide bombers and the psycho-political causes and consequences of the Iraq war, is especially insightful in considering the psychological meaning of 9/11 for the world outside the U.S. In complementary forays into psyche and politics, Wirth explores the relationship of xenophobia and violence; the story of Jewish analysts who emigrated from Nazi Germany to the United States; the idea of man in psychoanalysis; and the family dynamics that sustain the AIDS phobia. These wonderfully illuminating essays, both cautionary and constructive, show how clinical experience with the unconscious processes of violence, traumatization, and destructiveness can be foundational to new political strategies for dealing with collective violence.
This concise, accessible text provides a thorough introduction to
quantum computing - an exciting emergent field at the interface of
the computer, engineering, mathematical and physical sciences.
Aimed at advanced undergraduate and beginning graduate students in
these disciplines, the text is
Written for use in teaching and for self-study, this book provides a comprehensive and pedagogical introduction to groups, algebras, geometry, and topology. It assimilates modern applications of these concepts, assuming only an advanced undergraduate preparation in physics. It provides a balanced view of group theory, Lie algebras, and topological concepts, while emphasizing a broad range of modern applications such as Lorentz and Poincare invariance, coherent states, quantum phase transitions, the quantum Hall effect, topological matter, and Chern numbers, among many others. An example based approach is adopted from the outset, and the book includes worked examples and informational boxes to illustrate and expand on key concepts. 344 homework problems are included, with full solutions available to instructors, and a subset of 172 of these problems have full solutions available to students.
This book aims to present a pedagogical and self-consistent treatment of the canonical approach to Quantum Gravity, starting from its original formulation to the most recent developments in the field.We start with an innovative and enlightening introduction to the formalism and concepts on which General Relativity has been built, giving all the information necessary in the later analysis. A brief sketch of the Standard Cosmological Model describing the Universe evolution is also given alongside the analysis of the inflationary mechanism. After deepening the fundamental properties of constrained dynamic systems, the Lagrangian approach to the Einsteinian Theory is presented in some detail, underlining the parallelism with non-Abelian gauge theories. Then, the basic concepts of the canonical approach to Quantum Mechanics are provided, focusing on all those formulations which are relevant for the Canonical Quantum Gravity problem. The Hamiltonian formulation of General Relativity and its constrained structure is then analyzed by comparing different formulations. The resulting quantum dynamics, described by the Wheeler-DeWitt equation, is fully discussed in order to outline its merits and limits. Afterwards, the reformulation of Canonical Quantum Gravity in terms of the Ashtekar-Barbero-Immirzi variables is faced by a detailed discussion of the resulting Loop Quantum Gravity Theory. Finally, we provide a consistent picture of canonical Quantum Cosmology by facing the main features of the Wheeler-DeWitt equation for the homogeneous Bianchi models and then by a detailed treatment of Loop Quantum Cosmology, including very recent developments.
This book of essays in four parts, was written over a decade and full of surprises for the breadth and variety of its subject matter. The first part is about the foundations of the quantum theory which reflects the author's many conversations with the late John Bell who persuaded him that there is still no satisfactory interpretation of the theory. The second part deals with nuclear weapons. One of the essays concerns the creation of the modern gas centrifuge which was done by German prisoners of war in the Soviet Union. The proliferation of these centrifuges was one of the issues in the spread of nuclear weapons. The third section deals with financial engineering with a profile of Louis Bachelier, the French mathematician who created it at the beginning of the 20th century. The final section deals with the Higgs boson and how it is used for generating mass. It includes a detailed article of how this mechanism works.
This century has seen the development of technologies for manipulating and controlling matter and light at the level of individual photons and atoms, a realm in which physics is fully quantum mechanical. The dominant experimental technology is the laser, and the theoretical paradigm is quantum optics.The Quantum World of Ultra-Cold Atoms and Light is a trilogy, which presents the quantum optics way of thinking and its applications to quantum devices. This book - Foundations of Quantum Optics - provides an introductory text on the theoretical techniques of quantum optics, containing the elements of what one needs to teach, learn, and "think" about quantum optics. There is a particular emphasis on the classical and quantum stochastic methods which have come to dominate the field.Book II will cover applications to quantum devices, such as quantum computers and simulators, and will include the more advanced techniques necessary to describe non-classical light fields. Book III will cover the field of ultra-cold atoms, for which the quantum-optical paradigm has proved to be highly applicable for quantitative work.
This century has seen the development of technologies for manipulating and controlling matter and light at the level of individual photons and atoms, a realm in which physics is fully quantum mechanical. The dominant experimental technology is the laser, and the theoretical paradigm is quantum optics.The Quantum World of Ultra-Cold Atoms and Light is a trilogy, which presents the quantum optics way of thinking and its applications to quantum devices. This book - Foundations of Quantum Optics - provides an introductory text on the theoretical techniques of quantum optics, containing the elements of what one needs to teach, learn, and "think" about quantum optics. There is a particular emphasis on the classical and quantum stochastic methods which have come to dominate the field.Book II will cover applications to quantum devices, such as quantum computers and simulators, and will include the more advanced techniques necessary to describe non-classical light fields. Book III will cover the field of ultra-cold atoms, for which the quantum-optical paradigm has proved to be highly applicable for quantitative work.
From the early wave-particle arguments to the mathematical theory of electromagnetism to Einstein s work on the quantization of light, different descriptions of what constitutes light have existed for over 300 years. Light The Physics of the Photon examines the photon phenomenon from several perspectives. It demonstrates the importance of studying the photon as a concept belonging to a global vacuum (matter-free space). Divided into eight parts, the book begins with exploring aspects of classical optics in a global vacuum on the basis of free-space Maxwell equations. It then describes light rays and geodesics and presents a brief account of the Maxwell theory in general relativity. After discussing the theory of photon wave mechanics, the author gives a field-quantized description of the electromagnetic field, emphasizing single-photon quantum optics in Minkowskian space. He next focuses on photon physics in the rim zone of matter, paying particular attention to photon emission processes. He also takes a closer look at the photon source domain and field propagators, which conveniently describe the photon field propagation in the vicinity of and far from the electronic source domain. The last two parts discuss the photon vacuum and light quanta in Minkowskian space as well as two-photon entanglement, which is associated with the biphoton in space-time."
This is an introduction to the mathematical foundations of quantum field theory, using operator algebraic methods and emphasizing the link between the mathematical formulations and related physical concepts. It starts with a general probabilistic description of physics, which encompasses both classical and quantum physics. The basic key physical notions are clarified at this point. It then introduces operator algebraic methods for quantum theory, and goes on to discuss the theory of special relativity, scattering theory, and sector theory in this context.
This is the solution manual for Riazuddin's and Fayyazuddin's Quantum Mechanics (2nd edition). The questions in the original book were selected with a view to illustrate the physical concepts and use of mathematical techniques which show their universality in tackling various problems of different physical origins. This solution manual contains the text and complete solution of every problem in the original book. This book will be a useful reference for students looking to master the concepts introduced in Quantum Mechanics (2nd edition).
This book is a collection of contributions from a Summer Workshop on "Physics, Mathematics, and All That Quantum Jazz". Subjects of the symposium include quantum information theory, quantum annealing, Bose gases, and thermodynamics from a viewpoint of quantum physics. Contributions to this book are prepared in a self-contained manner so that readers with a modest background may understand the subjects.
Containing the proceedings of the symposium held by the American Academy of Arts and Sciences to celebrate the 100th anniversary of the birth of Niels Bohr, this collection was first published in 1988. More than any other individual, Bohr was responsible for the development of quantum mechanics and for many of its applications in the pursuit of fundamental understanding of physical reality. In addition to his unique role in the discovery and elucidation of quantum theory, Bohr led the study of the fission of nuclei and was greatly concerned with the impact of the existence of the atomic bomb in the post-World War II era. This unique volume provides a panoramic view of modern physics, some of the philosophical issues associated with quantum theory, the impact of this momentous scientific development on the political circumstance of the Cold War Era and the qualities of a superlative scientist. |
![]() ![]() You may like...
Symmetry in Quantum Theory of Gravity
Chris Fields, Antonino Marciano
Hardcover
R1,192
Discovery Miles 11 920
|