Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Physics > Quantum physics (quantum mechanics)
This book is a broad-based text intended to help the growing student body interested in constructing and applying methods of effective field theory to solve problems in their research. It begins with a review of using symmetries to identify the relevant degrees of freedom in a problem, and then presents a variety of methods that can be used to construct various effective theories. A detailed discussion of canonical applications of effective field theory techniques with increasing complexity is given, including Fermi's weak interaction, heavy-quark effective theory, and soft-collinear effective theory. Applications of these techniques to study physics beyond the standard model, dark matter, and quantum and classical gravity are explored. Although most examples come from questions in high-energy physics, many of the methods can also be applied in condensed-matter settings. Appendices include various factoids from group theory and other topics that are used throughout the text, in an attempt to make the book self-contained.
This book aims to provide a quick pedagogical introduction to path integrals. It contains original material that never before has appeared in a book, for example the path integrals for the Wigner functions and for Classical Mechanics. This application to Classical Mechanics connects different fields like Hamiltonian mechanics and differential geometry, so the book is suitable for students and researchers from various disciplines.
This book aims to provide a quick pedagogical introduction to path integrals. It contains original material that never before has appeared in a book, for example the path integrals for the Wigner functions and for Classical Mechanics. This application to Classical Mechanics connects different fields like Hamiltonian mechanics and differential geometry, so the book is suitable for students and researchers from various disciplines.
Published in 1934, this monograph was one of the first introductory accounts of the principles which form the physical basis of the Quantum Theory, considered as a branch of mathematics. The exposition is restricted to a discussion of general principles and does not attempt detailed application to the wide domain of atomic physics, although a number of special problems are considered in elucidation of the principles. The necessary fundamental mathematical methods - the theory of linear operators and of matrics - are developed in the first chapter so this could introduce anyone to the new theory. This is an interesting snapshot of scientific history.
Get First-Hand Insight from a Contributor to the Standard Model of Particle Physics Written by an award-winning former director-general of CERN and one of the world's leading experts on particle physics, Electroweak Interactions explores the concepts that led to unification of the weak and electromagnetic interactions. It provides the fundamental elements of the theory of compact Lie groups and their representations, enabling a basic understanding of the role of flavor symmetry in particle physics. Understand Conceptual Elements of the Theory of Elementary Particles The book begins with the identification of the weak hadronic current with the isotopic spin current, Yang-Mills theory, and the first electroweak theory of Glashow. It discusses spontaneous breaking of a global symmetry and a local symmetry, covering the Goldstone theorem, Brout-Englert-Higgs mechanism, and the theory of Weinberg and Salam. The author then describes the theory of quarks, quark mixing, the Cabibbo angle, the Glashow-Iliopoulos-Maiani (GIM) mechanism, the theory of Kobayashi and Maskawa, six quark flavors, and CP violation. Delve into Experimental Tests and Unresolved Problems The author goes on to explore some phenomenological topics, such as neutral current interactions of neutrinos and CP violation in the neutral K-meson system. He also highlights how flavor-changing neutral current processes have emerged as probes to reveal the presence of new phenomena at energies not yet accessible with particle accelerators. The book concludes with an explanation of the expected properties of the Higgs boson and the methods adopted for its search. The predictions are also compared with relevant experimental results. View the author's first book in this collection: Relativistic Quantum Mechanics: An Introduction to Relativistic Quantum Fields.
We extend to gravitation our previous study of a quantum wave for all particles and antiparticles of each generation (electron + neutrino + u and d quarks for instance). This wave equation is form invariant under Cl3*, then relativistic invariant. It is gauge invariant under the gauge group of the standard model, with a mass term: this was impossible before, and the consequence was an impossibility to link gauge interactions and gravitation.
Quantum mechanics is one of the most brilliant, stimulating, elegant and exciting theories of twentieth century. It has not only explained a wide range of phenomena but has brought revolutionary changes in the conceptual foundations of physics and continues to shape the modern world. As quantum mechanics involves the introduction of a new conceptual framework, the new ideas are explicitly mentioned and explained in detail in this book and wherever possible the various aspects of original thinking of eminent physicists are reflected. The emphasis is on helping students comprehend the significance of the underlying principles and understand the ways the new concepts were introduced. Including many worked examples and problems this book will be an invaluable resource for students in physics, chemistry and electrical engineering needing a clear and rigorous introduction to quantum mechanics.
There are very few with Philip Morrison's gifts, few who can lead us with firm knowledge whispering just the right encouragement as he guides us across the great ideas of science. Take this journey with one of the most astute navigators and you'll find yourself compelled to go deeper into some of the most daring adventures of modern science. Nothing is too grand or seemingly too trivial - the nature of time, the fabric of the atom, what it means to explore scientific horizons, the galaxies, even the search for unknown intelligence in the vast as-yet-uncharted universe. Then as deftly as Morrison takes us on a dazzling tour of the stars, he gently settles down for an intimate stop in the nursery where children have their first encounters with the things of everyday life, everyday things that cause us to wonder and make for discovery. With an equally firm grasp, Morrison, who witnessed the first tests of the atom bomb, takes us unflinchingly through some of the most frightening terrain of modern times, where the arms race can cause our ultimate destruction, but where sanity can still bring us peace. This extraordinary collection of essays by one of the most profound commentators on the successes and failures of the scientific enterprize concludes with lively portraits of men of science - Neils Bohr, Richard Feynman, Charles Babbage, among other notable friends and heroes.
This invaluable book provides a broad and comprehensive introduction to the fascinating and beautiful subject of timeless approaches in physics, focusing the attention in particular on significant models developed recently by the author. It presents relevant and novel perspectives in 21st century theoretical physics as regards the arena of physical processes and its geometry (both in special relativity, quantum mechanics, the quantum gravity domain and about the quantum vacuum). The timeless approach may be used as a source of reference by researchers in theoretical physics and at the same time it is also suitable for graduate students in physics who wish to have an extend view of some of the classic and fundamental models in the subject.
Unified Field Mechanics, the topic of the 9th international symposium honoring noted French mathematical physicist Jean-Pierre Vigier cannot be considered highly speculative as a myopic critic might surmise. The 8th Vigier Symposium proceedings 'The Physics of Reality' should in fact be touted as a companion volume because of its dramatic theoretical Field Mechanics in additional dimensionality. Many still consider the Planck-scale zero-point field stochastic quantum foam as the 'basement of reality'. This could only be considered true under the limitations of the Copenhagen interpretation of quantum theory. As we enter the next regime of Unified Field Mechanics we now know that the energy-dependent Einstein-Minkowski manifold called spacetime has a finite radius beyond which a large-scale multiverse beckons. So far a battery of 14 experiments has been designed to falsify the model. When the 1st is successfully performed, a revolution in Natural Science will occur! This volume strengthens and expands the theoretical and experimental basis for that immanent new age.
This textbook presents various methods to deal with quantum many-body systems, mainly addressing interacting electrons. It focusses on basic tools to tackle quantum effects in macroscopic systems of interacting particles, and on fundamental concepts to interpret the behavior of such systems as revealed by experiments. The textbook starts from simple concepts like second quantization, which allows one to include the indistinguishability and statistics of particles in a rather simple framework, and linear response theory. Then, it gradually moves towards more technical and advanced subjects, including recent developments in the field. The diagrammatic technique is comprehensively discussed. Some of the advanced topics include Landau's Fermi liquid theory, Luttinger liquids, the Kondo effect, and the Mott transition. The ultimate goal of the book is to gain comprehension of physical quantities that are routinely measured experimentally and fully characterize the system, therefore it is useful for graduate students but also young researchers studying and investigating the theoretical aspects of condensed matter physics.
Using Cartan's differential 1-forms theory, and assuming that the motion variables depend on Euclidean invariants, certain dynamics of the material point and systems of material points are developed. Within such a frame, the Newtonian force as mass inertial interaction at the intragalactic scale, and the Hubble-type repulsive interaction at intergalactic distances, are developed.The wave-corpuscle duality implies movements on curves of constant informational energy, which implies both quantizations and dynamics of velocity limits.Analysis of motion of a charged particle in a combined field which is electromagnetic and with constant magnetism implies fractal trajectories. Mechanics of material points in a fractalic space is constructed, and various applications - fractal atom, potential well, free particle, etc. - are discussed.
Topological Phases of Matter are an exceptionally dynamic field of research: several of the most exciting recent experimental discoveries and conceptual advances in modern physics have originated in this field. These have generated new, topological, notions of order, interactions and excitations. This text provides an accessible, unified and comprehensive introduction to the phenomena surrounding topological matter, with detailed expositions of the underlying theoretical tools and conceptual framework, alongside accounts of the central experimental breakthroughs. Among the systems covered are topological insulators, magnets, semimetals, and superconductors. The emergence of new particles with remarkable properties such as fractional charge and statistics is discussed alongside possible applications such as fault-tolerant topological quantum computing. Suitable as a textbook for graduate or advanced undergraduate students, or as a reference for more experienced researchers, the book assumes little prior background, providing self-contained introductions to topics as varied as phase transitions, superconductivity, and localisation.
Quantum-state estimation is an important field in quantum information theory that deals with the characterization of states of affairs for quantum sources. This book begins with background formalism in estimation theory to establish the necessary prerequisites. This basic understanding allows us to explore popular likelihood- and entropy-related estimation schemes that are suitable for an introductory survey on the subject. Discussions on practical aspects of quantum-state estimation ensue, with emphasis on the evaluation of tomographic performances for estimation schemes, experimental realizations of quantum measurements and detection of single-mode multi-photon sources. Finally, the concepts of phase-space distribution functions, which compatibly describe these multi-photon sources, are introduced to bridge the gap between discrete and continuous quantum degrees of freedom.This book is intended to serve as an instructive and self-contained medium for advanced undergraduate and postgraduate students to grasp the basics of quantum-state estimation. Any reader with a solid foundation in quantum mechanics, linear algebra and calculus would be able to follow the book comfortably.
Quantum-state estimation is an important field in quantum information theory that deals with the characterization of states of affairs for quantum sources. This book begins with background formalism in estimation theory to establish the necessary prerequisites. This basic understanding allows us to explore popular likelihood- and entropy-related estimation schemes that are suitable for an introductory survey on the subject. Discussions on practical aspects of quantum-state estimation ensue, with emphasis on the evaluation of tomographic performances for estimation schemes, experimental realizations of quantum measurements and detection of single-mode multi-photon sources. Finally, the concepts of phase-space distribution functions, which compatibly describe these multi-photon sources, are introduced to bridge the gap between discrete and continuous quantum degrees of freedom.This book is intended to serve as an instructive and self-contained medium for advanced undergraduate and postgraduate students to grasp the basics of quantum-state estimation. Any reader with a solid foundation in quantum mechanics, linear algebra and calculus would be able to follow the book comfortably.
Our understanding of the physical world was revolutionized in the twentieth century - the era of 'modern physics'. Three texts presenting the foundations and frontiers of modern physics have been published by the second author. Many problems are included in these books. The current authors have published solutions manuals for two of the texts Introduction to Modern Physics: Theoretical Foundations and Topics in Modern Physics: Theoretical Foundations.The present book provides solutions to the over 180 problems in the remaining text Advanced Modern Physics: Theoretical Foundations. This is the most challenging material, ranging over advanced quantum mechanics, angular momentum, scattering theory, lagrangian field theory, symmetries, Feynman rules, quantum electrodynamics (QED), higher-order processes, path-integrals, and canonical transformations for quantum systems; several appendices supply important details.This solutions manual completes the modern physics series, whose goal is to provide a path through the principal areas of theoretical physics of the twentieth century in sufficient detail so that students can obtain an understanding and an elementary working knowledge of the field. While obtaining familiarity with what has gone before would seem to be a daunting task, these volumes should help the dedicated student to find that job less challenging, and even enjoyable.
Introduction to Spintronics provides an accessible, organized, and progressive presentation of the quantum mechanical concept of spin and the technology of using it to store, process, and communicate information. Fully updated and expanded to 18 chapters, this Second Edition: Reflects the explosion of study in spin-related physics, addressing seven important physical phenomena with spintronic device applications Discusses the recently discovered field of spintronics without magnetism, which allows one to manipulate spin currents by purely electrical means Explores lateral spin-orbit interaction and its many nuances, as well as the possibility to implement spin polarizers and analyzers using quantum point contacts Introduces the concept of single-domain-nanomagnet-based computing, an ultra-energy-efficient approach to compute and store information using nanomagnets, offering a practical rendition of single-spin logic architecture ideas and an alternative to transistor-based computing hardware Features many new drill problems, and includes a solution manual and figure slides with qualifying course adoption Still the only known spintronics textbook written in English, Introduction to Spintronics, Second Edition is a must read for those interested in the science and technology of storing, processing, and communicating information via the spin degree of freedom of electrons.
In last years increasing attention has been again devoted to interpretations of quantum theory. In the same time interesting quantum optical experiments have been performed using nonlinear optical processes, in particular frequency down conversion, which provided new information about nature of a photon on the basis of interference and correlation (coincidence) phenomena. Such single-photon and twin-photon effects of quantum optics provide new point of view of interpretations of quantum theory and new tests of its principles. The purpose of this book is to discuss these questions. To follow this goal we give brief reviews of principles of quantum theory and of quantum theory of measurement. As a fundamental theoretical tool the coherent state technique is adopted based on a general algebraic treatment, including the de scription of interaction of radiation and matter. Typical quantum behaviour of physical systems is exhibited by nonclassical optical phenomena, which can be examined using photon interferences and correlations. These phenomena are closely related to violation of various classical inequalities and Bell's in equalities. The most important part of this book discusses quantum optical experiments supporting quantum theory. This book may be considered as a continuation of previous monographs by one of the authors on Coherence of Light (Van Nostrand Reinhold, London 1972, second edition D. Reidel, Dordrecht 1985) and on Quantum Statistics of Linear and Nonlinear Optical Phenomena (D. Reidel, Dordrecht 1984, second edition Kluwer, Dordrecht 1991), which may serve as a preparation for reading this book."
This volume presents the latest advancements and future developments of atomic, molecular and optical (AMO) physics and its vital role in modern sciences and technologies. The chapters are devoted to studies of a wide range of quantum systems, with an emphasis on understanding of quantum coherence and other quantum phenomena originated from light-matter interactions. The book intends to survey the current research landscape and to highlight major scientific trends in AMO physics as well as those interfacing with interdisciplinary sciences. The volume may be particularly useful for young researchers working on establishing their scientific interests and goals.
This book discusses the main concepts of the Standard Model of elementary particles in a compact and straightforward way. The theoretical results are derived using the physical phenomena as a starting point. This inductive approach allows a deep understanding of the methods used for solving problems in this field. This second, revised edition is expanded with biographical notes contextualizing the main results in quantum field theory.
This authoritative biography addresses the life and work of the quantum physicist David Bohm. Although quantum physics is considered the soundest physical theory, its strange and paradoxical features have challenged - and continue to challenge - even the brightest thinkers. David Bohm dedicated his entire life to enhancing our understanding of quantum mysteries, in particular quantum nonlocality. His work took place at the height of the cultural/political upheaval in the 1950's, which led him to become the most notable American scientist to seek exile in the last century. The story of his life is as fascinating as his ideas on the quantum world are appealing.
Quantum mechanics was developed during the first few decades of the twentieth century via a series of inspired guesses made by various physicists, including Planck, Einstein, Bohr, Schroedinger, Heisenberg, Pauli, and Dirac. All these scientists were trying to construct a self-consistent theory of microscopic dynamics that was compatible with experimental observations.The purpose of this book is to present quantum mechanics in a clear, concise, and systematic fashion, starting from the fundamental postulates, and developing the theory in as logical a manner as possible. Topics covered in the book include the fundamental postulates of quantum mechanics, angular momentum, time-independent and time-dependent perturbation theory, scattering theory, identical particles, and relativistic electron theory.
Quantum mechanics was developed during the first few decades of the twentieth century via a series of inspired guesses made by various physicists, including Planck, Einstein, Bohr, Schroedinger, Heisenberg, Pauli, and Dirac. All these scientists were trying to construct a self-consistent theory of microscopic dynamics that was compatible with experimental observations.The purpose of this book is to present quantum mechanics in a clear, concise, and systematic fashion, starting from the fundamental postulates, and developing the theory in as logical a manner as possible. Topics covered in the book include the fundamental postulates of quantum mechanics, angular momentum, time-independent and time-dependent perturbation theory, scattering theory, identical particles, and relativistic electron theory.
N atur non facit saltus? This book is devoted to the fundamental problem which arises contin uously in the process of the human investigation of reality: the role of a mathematical apparatus in a description of reality. We pay our main attention to the role of number systems which are used, or may be used, in this process. We shall show that the picture of reality based on the standard (since the works of Galileo and Newton) methods of real analysis is not the unique possible way of presenting reality in a human brain. There exist other pictures of reality where other num ber fields are used as basic elements of a mathematical description. In this book we try to build a p-adic picture of reality based on the fields of p-adic numbers Qp and corresponding analysis (a particular case of so called non-Archimedean analysis). However, this book must not be considered as only a book on p-adic analysis and its applications. We study a much more extended range of problems. Our philosophical and physical ideas can be realized in other mathematical frameworks which are not obliged to be based on p-adic analysis. We shall show that many problems of the description of reality with the aid of real numbers are induced by unlimited applications of the so called Archimedean axiom."
This century has seen the development of technologies for manipulating and controlling matter and light at the level of individual photons and atoms, a realm in which physics is fully quantum-mechanical. The dominant experimental technology is the laser, and the theoretical paradigm is quantum optics.The Quantum World of Ultra-Cold Atoms and Light is a trilogy, which presents the quantum optics way of thinking and its applications to quantum devices. This book - The Physics of Quantum-Optical Devices - provides a comprehensive treatment of theoretical quantum optics. It covers applications to the optical manipulation of the quantum states of atoms, laser cooling, continuous measurement, quantum computers and quantum processors, superconducting systems and quantum networks. The subject is consistently formulated in terms of quantum stochastic techniques, and a systematic and thorough development of these techniques is a central part of the book. There is also a compact overview of the ideas of quantum information theory.The main aim of the book is to present the theoretical techniques necessary for the understanding of quantum optical devices, with special attention to those devices used in quantum information processing and quantum simulation. Although these techniques were developed originally for the optical regime, they are also applicable to electromagnetic radiation from the microwave realm to the ultra-violet, and for atomic systems, Josephson junction systems, quantum dots and nano-mechanical systems. |
You may like...
The Routledge Handbook of Second…
Nicole Ziegler, Marta Gonzalez-Lloret
Hardcover
R5,455
Discovery Miles 54 550
A Deeper Learning Companion for CLIL…
Do Coyle, Oliver Meyer, …
Hardcover
R1,967
Discovery Miles 19 670
Developing Writing Skills for IELTS - A…
Sin Wang Chong, Xuejun Ye
Hardcover
R3,893
Discovery Miles 38 930
Taboos and Controversial Issues in…
Christian Ludwig, Theresa Summer
Hardcover
R3,597
Discovery Miles 35 970
Longitudinal Studies of Second Language…
Steven J. Ross, Megan C. Masters
Paperback
R1,100
Discovery Miles 11 000
|