![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Quantum physics (quantum mechanics)
This introduction to quantum mechanics is intended for undergraduate students of physics, chemistry, and engineering with some previous exposure to quantum ideas. Following in Heisenberg's and Dirac's footsteps, this book is centered on the concept of the quantum state as an embodiment of all experimentally available information about a system, and its representation as a vector in an abstract Hilbert space. This conceptual framework and formalism are introduced immediately, and developed throughout the first four chapters, while the standard Schroedinger equation does not appear until Chapter 5. The book grew out of lecture notes developed by the author over fifteen years of teaching at the undergraduate level. In response to numerous requests by students, material is presented with an unprecedented level of detail in both derivation of technical results and discussion of their physical significance. The book is written for students to enjoy reading it, rather than to use only as a source of formulas and examples. The colloquial and personal writing style makes it easier for readers to connect with the material. Additionally, readers will find short, relatable snippets about the "founding fathers" of quantum theory, their difficult historical circumstances, personal failings and triumphs, and often tragic fate. This textbook, complete with extensive original end-of-chapter exercises, is recommended for use in one- or two-semester courses for upper level undergraduate and beginning graduate students in physics, chemistry, or engineering.
The author has shown that practically all our laws, principles, and theories are not physically realizable, since they were derived from an empty space paradigm. From which this book is started with the origin of our temporal (t > 0) universe, it shows that temporal subspace is a physically realizable space within our universe. As in contrasted with generally accepted paradigm where time is an independent variable. From which the author has shown that it is not how rigorous mathematics is, but it is the temporal (t > 0) space paradigm determines the physically realizable solution. Although Einstein's relativity and Schroedinger's principle had revolutionized the modern science, this book has shown that both theory and principle are physically non-realizable since they were developed from an empty space paradigm. One of the most important contribution of this book must be the revolutionary idea of our temporal (t > 0) space, for which the author has shown that absolute certainty exists only at the present (t = 0) moment. Where past-time information has no physical substance and future-time represents a physically realizable yet uncertainty. From which the author has shown that all the existent laws, principles, and theories were based on past-time certainties to predict the future, but science is supposed to be approximated. The author has also shown that this is precisely our theoretical science was developed. But time independent laws and principles are not existed within our temporal universe, in view of the author's temporal exclusive principle. By which the author has noted that timeless science has already created a worldwide conspiracy for examples such as superposition principle, qubit information, relativity theory, wormhole travelling and many others. This book has also shown that Heisenberg's uncertainty is an observational principle independent with time, yet within our universe everything changes with time. In this book the author has also noted that micro space behaviors the same as macro space regardless of the particle size. Finally, one of interesting feature is that, that big bang creation was ignited by a self-induced gravitational force instead by time as commonly believed. Nevertheless, everything has a price to pay; a section of time t and an amount of energy E and it is not free. The author has also shown that time is the only variable that cannot be changed. Although we can squeeze a section of time t as small as we wish but we can never able to squeeze t to zero even we have all the needed energy. Nevertheless, this revolutionary book closer to the truth is highly recommended to every scientist and engineer, otherwise we will forever be trapped within the timeless fantasyland of science. This book is intended for cosmologists, particle physicists, astrophysicists, quantum physicists, computer scientists, optical scientists, communication engineers, professors, and students as a reference or a research-oriented book.
Quantum Theory: Density, Condensation, and Bonding presents in a unitary manner the main actual theories of matter, mainly the density function theory (DFT) for fermions, the Bose-Einstein condensation (BEC) for bosons, and chemical bonding as a special realization of the first two so-called mixed fermionic-bosonic states. The book covers the modern and ultimately developed quantum theories involving the key concepts of density, condensation, and bonding. The book compiles, for the first time, the density functional theory with Bose-Einstein condensation and chemical bonding theories in a fresh and novel perspective. The book introduces modern theories of matter structure and explains the nature of chemical bonds under the consecrated and ultimate quantum paradigms of molecular structure. The book is divided into three parts, one for each level of studies: Part I: Primer Density Functional Theory is suitable for undergraduate introductory courses in physics, chemistry, and the natural sciences. Part II: Primer Density Functional Bose-Einstein Condensation Theory would be suitable for graduate- or master-level courses in physics or natural sciences. Part III: Modern Quantum Theories of Chemical Bonding is written for the post-graduate, master or doctorate courses on quantum structure of molecules in chemistry or natural sciences. Thus, this book is organized as a succession of three linked courses, from undergraduate, to graduate, to postgraduate levels in modern quantum theories of many-body systems. It covers three main concepts: density, condensation, and bonding and contains the most celebrated and challenging theories of matter. The book provides a fresh perspective on the quantum theory of structure of physico-chemical systems and will show students at all levels and researchers the way for future elaboration and discoveries toward the unification of the physical and chemical concepts of matter.
The results of renormalized perturbation theory, in QCD and other quantum field theories, are ambiguous at any finite order, due to renormalization-scheme dependence. The perturbative results depend upon extraneous scheme variables, including the renormalization scale, that the exact result cannot depend on. Such 'non-invariant approximations' occur in many other areas of physics, too. The sensible strategy is to find where the approximant is stationary under small variations of the extraneous variables. This general principle is explained and illustrated with various examples. Also dimensional transmutation, RG equations, the essence of renormalization and the origin of its ambiguities are explained in simple terms, assuming little or no background in quantum field theory. The minimal-sensitivity approach leads to 'optimized perturbation theory,' which is developed in detail. Applications to Re+e-, the infrared limit, and to the optimization of factorized quantities, are also discussed thoroughly.
This book focuses on recent topics of quantum science in both physics and chemistry. Until now, quantum science has not been fully discussed from the interdisciplinary vantage points of both physics and chemistry. This book, however, is written not only for theoretical physicists and chemists, but also for experimentalists in the fields of physical chemistry and condensed matter physics, as collaboration and interplay between construction of quantum theory, and experimentation has become more important. Tips for starting new types of research projects will be found in an understanding of cutting-edge quantum science. In Part I, quantum electronic structures are explained in cases of strongly correlated copper oxides and heavy elements. In Part II, quantum molecular dynamics is investigated by computational approaches and molecular beam experiments. In Part III, after lithium problem in big bang nucleosynthesis scenario is considered using supersymmetric standard model, quantum theories in atomic and molecular systems are reviewed. Finally, in Part IV, the development of quantum computational method is introduced.
During the last thirty years a great advancement in low energy physics, particularly interactions of atoms with the electromagnetic field, has been achieved and the development of electronics and laser techniques has allowed to implement a fine manipulation of atoms with photons. A wealth of important applications has sprung out from the ability of manipulating large samples of cold atoms. Among them, the improvement of atomic clocks and the creation of atomic gyroscopes and of atomic gravity meters, which is obviously of great interest for geodesists and geophysicists, particularly for potential applications in satellite geodesy. This book explains the fundamental concepts necessary to understand atom manipulation by photons, including the principles of quantum mechanics. It is conceived as a road that leads the reader from classical physics (mechanics and electromagnetism, considered as a common scientific background of geodesists and geophysicists), to the basics of quantum mechanics in order to understand the dynamics of atoms falling in the gravity field, while interacting with suitably resonant laser beams. There are different types of measurements of gravity based on the manipulation of ultra-cold atoms; the book presents the principles of the instruments based on stimulated Raman transition, which can be easily worked out analytically. However, the concepts explained in the text can provide a good starting point to understand also the applications based on the so-called Block oscillations or on the Bose-Einstein condensation.
Gets right to the point with step-by-step guidance on solving physics problems. Covers all topics in standard general physics courses in the same sequence. Keeps learning about physics fun and engaging through the story of dinosaurs being tested on their knowledge for a final challenge (deflecting an asteroid headed to Earth!). Enables the reader to quickly flip through and locate steps needed for a particular problem. Includes tons of easy to follow diagrams and worked solutions.
Many technological applications exploit a variety of magnetic structures, or magnetic phases, to produce and optimise solid-state functionality. However, most research advances are restricted to a reduced number of phases owing to computational and resource constraints. This thesis presents an ab-initio theory to efficiently describe complex magnetic phases and their temperature-dependent properties. The central assumption is that magnetic phases evolve slowly compared with the underlying electronic structure from which they emerge. By describing how the electronic structure adapts to the type and extent of magnetic order, a theory able to describe multi-spin correlations and their effect on the magnetism at finite temperature is obtained. It is shown that multi-spin correlations are behind the temperature and magnetic field dependence of the diverse magnetism in the heavy rare earth elements. Magnetically frustrated Mn-based materials and the effect of strain are also investigated. These studies demonstrate that the performance of solid-state refrigeration can be enhanced by multi-spin effects.
Quantum states of atoms and molecules The translational symmetry and quantum states in periodic and amorphous solids Band structure and tuning Classical and quantum statistics with applications to ideal gases (photons, phonons and electrons, molecules) Quantum states in type-I and type-II superconductors (elementary theory included) Magnetic materials, materials with GMR and CMR Shape memory effects in alloys and materials 2D materials (graphene and graphene analogus) NLO and photovoltaic materials Hydrogen storage material for mitigating the looming energy crisis Quantum states in low and high band gap semiconductors Semimetals Designer materials, etc.
Based on the analytical methods and the computer programs presented in this book, all that may be needed to perform MRI tissue diagnosis is the availability of relaxometric data and simple computer program proficiency. These programs are easy to use, highly interactive and the data processing is fast and unambiguous. Laboratories (with or without sophisticated facilities) can perform computational magnetic resonance diagnosis with only T1 and T2 relaxation data. The results have motivated the use of data to produce data-driven predictions required for machine learning, artificial intelligence (AI) and deep learning for multidisciplinary and interdisciplinary research. Consequently, this book is intended to be very useful for students, scientists, engineers, the medical personnel and researchers who are interested in developing new concepts for deeper appreciation of computational magnetic resonance imaging for medical diagnosis, prognosis, therapy and management of tissue diseases.
In this book, quantum mechanics is developed from the outset on a relativistic basis, using the superposition principle, Lorentz invariance and gauge invariance. Nonrelativistic quantum mechanics as well as classical relativistic mechanics appear as special cases. They are the sources of familiar names such as "orbital angular momentum," "spin-orbit coupling" and "magnetic moment" for operators of the relativistic quantum formalism. The theory of binaries, in terms of differential equations, is treated for the first time in this book. These have the mathematical structure of the corresponding one-body equations (Klein-Gordon for two spinless particles, Dirac for two spinor particles) with a relativistically reduced mass. They allow the calculation of radiative corrections via the vector potential operator. This second edition of the successful textbook adds various new sections on relativistic quantum chemistry and on the relativistic treatment of the proton in hydrogen. Others chapters have been expanded, e.g. on hyperfinite interactions, or carefully revisited.
Magnetic and spintronic materials are ubiquitous in modern technological applications, e.g. in electric motors, power generators, sensors and actuators, not to mention information storage and processing. Medical technology has also greatly benefited from magnetic materials - especially magnetic nanoparticles - for therapy and diagnostics methods. All of the above-mentioned applications rely on the properties of the materials used. These properties in turn depend on intrinsic and extrinsic material parameters. The former are related to the actual elements used and their properties, e.g. atomic magnetic moment and exchange interaction between atoms; the latter are related to the structural and microstructural properties of the materials used, e.g. their crystal structure, grain size, and grain boundary phases. Focusing on state-of-the-art magnetic and spintronic materials, this book will introduce readers to a range of related topics in Physics and Materials Science. Phenomena and processes at the nanoscale are of particular importance in this context; accordingly, much of the book addresses such topics.
This book covers a range of new research on computational quantum chemistry, along with a special section devoted to exotic carbon allotropes and spiro quantum theory. The section on spiro quantum theory covers the technical presentation of the ideas surrounding the emergence of a synthetic, analytical, and theoretical spiro quantum chemistry edifice, as well as a chemical topology scheme that successfully describes molecules and patterns, including the hydrocarbons and allotropes of carbon. The second part of the book covers a range of new research on computational quantum chemistry.
Quantum mechanics is one of mankind's most remarkable intellectual achievements. Stunningly successful and elegant, it challenges our deepest intuitions about the world. In this book, seventeen physicists and philosophers, all deeply concerned with understanding quantum mechanics, reply to Schlosshauer's penetrating questions about the central issues. They grant us an intimate look at their radically different ways of making sense of the theory's strangeness. What is quantum mechanics about? What is it telling us about nature? Can quantum information or new experiments help lift the fog? And where are we headed next? Everyone interested in the contemporary but often longstanding conundrums of quantum theory, whether lay reader or expert, will find much food for thought in these pages. A wealth of personal reflections and anecdotes guarantee an engaging read. Participants: Guido Bacciagaluppi, Caslav Brukner, Jeffrey Bub, Arthur Fine, Christopher Fuchs, GianCarlo Ghirardi, Shelly Goldstein, Daniel Greenberger, Lucien Hardy, Anthony Leggett, Tim Maudlin, David Mermin, Lee Smolin, Antony Valentini, David Wallace, Anton Zeilinger, and Wojciech Zurek.
This comprehensive textbook provides the fundamental concepts and methods of dissipative quantum mechanics and related issues in condensed matter physics starting from first principles. It deals with the phenomena and theory of decoherence, relaxation and dissipation in quantum mechanics that arise from the random exchange of energy with the environment. Major theoretical advances in combination with stunning experimental achievements and the arising perspective for quantum computing have brightened the field and brought it to the attention of the general community in natural sciences. Expertise in dissipative quantum mechanics is by now beneficial in a broad sphere.This book - originally published in 1992 and republished as enlarged and updated second, third and fourth edition in 1999, 2008, and 2012 - dives even deeper into the fundamental concepts, methods and applications of quantum dissipation. The fifth edition provides a self-contained and updated account of the quantum mechanics and quantum statistics of open systems. The subject matter of the book has been thoroughly revised to better comply with the needs of newcomers and the demands of the advanced readership. Most of the chapters are rewritten to enhance clarity and topicality. Four new chapters covering recent developments in the field have been added. There are about 600 references. This book is intended for use by advanced undergraduate and graduate students in physics, and for researchers active in the field. They will find the monograph as a rich and stimulating source.
This comprehensive textbook provides the fundamental concepts and methods of dissipative quantum mechanics and related issues in condensed matter physics starting from first principles. It deals with the phenomena and theory of decoherence, relaxation and dissipation in quantum mechanics that arise from the random exchange of energy with the environment. Major theoretical advances in combination with stunning experimental achievements and the arising perspective for quantum computing have brightened the field and brought it to the attention of the general community in natural sciences. Expertise in dissipative quantum mechanics is by now beneficial in a broad sphere.This book - originally published in 1992 and republished as enlarged and updated second, third and fourth edition in 1999, 2008, and 2012 - dives even deeper into the fundamental concepts, methods and applications of quantum dissipation. The fifth edition provides a self-contained and updated account of the quantum mechanics and quantum statistics of open systems. The subject matter of the book has been thoroughly revised to better comply with the needs of newcomers and the demands of the advanced readership. Most of the chapters are rewritten to enhance clarity and topicality. Four new chapters covering recent developments in the field have been added. There are about 600 references. This book is intended for use by advanced undergraduate and graduate students in physics, and for researchers active in the field. They will find the monograph as a rich and stimulating source.
This book takes a pedagogical approach to explaining quantum gravity, supersymmetry and string theory in a coherent way. It is aimed at graduate students and researchers in quantum field theory and high-energy physics. The first part of the book introduces quantum gravity, without requiring previous knowledge of general relativity (GR). The necessary geometrical aspects are derived afresh leading to explicit general Lagrangians for gravity, including that of general relativity. The quantum aspect of gravitation, as described by the graviton, is introduced and perturbative quantum GR is discussed. The Schwinger-DeWitt formalism is developed to compute the one-loop contribution to the theory and renormalizability aspects of the perturbative theory are also discussed. This follows by introducing only the very basics of a non-perturbative, background-independent, formulation of quantum gravity, referred to as "loop quantum gravity", which gives rise to a quantization of space. In the second part the author introduces supersymmetry and its consequences. The generation of superfields is represented in detail. Supersymmetric generalizations of Maxwell's Theory as well as of Yang-Mills field theory, and of the standard model are worked out. Spontaneous symmetry breaking, improvement of the divergence problem in supersymmetric field theory, and its role in the hierarchy problem are covered. The unification of the fundamental constants in a supersymmetric version of the standard model are then studied. Geometrical aspects necessary to study supergravity are developed culminating in the derivation of its full action. The third part introduces string theory and the analysis of the spectra of the mass (squared) operator associated with the oscillating strings. The properties of the underlying fields, associated with massless particles, encountered in string theory are studied in some detail. Elements of compactification, duality and D-branes are given, as well of the generation of vertices and interactions of strings. In the final sections, the author shows how to recover GR and the Yang-Mills field Theory from string theory. |
You may like...
Machine Learning and Deep Learning…
K Suganthi, R. Karthik, …
Hardcover
R3,647
Discovery Miles 36 470
Enemy Of The People - How Jacob Zuma…
Adriaan Basson, Pieter du Toit
Paperback
(17)R268 Discovery Miles 2 680
Undaunted: North Africa - Sequel to the…
David Thompson, Trevor Benjamin
Game
R803
Discovery Miles 8 030
Edutech Enabled Teaching - Challenges…
Manpreet Singh Manna, Balamurugan Balusamy, …
Hardcover
R3,936
Discovery Miles 39 360
Data Science with Semantic Technologies…
Archana Patel, Narayan C Debnath
Hardcover
R5,199
Discovery Miles 51 990
|