Thisvolumecontainsthewrittenversionsofinvitedlecturespresentedat
the"39. InternationaleUniversitatswochenfur ..
Kern-undTeilchenphysik"in Schladming, Austria, which took place
from February 26th to March 4th, 2000. The title of the school was
"Methods of Quantization". This is, of
course,averybroad?eld,soonlysomeofthenewandinterestingdevel-
mentscouldbecoveredwithinthescopeoftheschool.
About75yearsagoSchrodingerpresentedhisfamouswaveequationand
Heisenbergcameupwithhisalgebraicapproachtothequantum-theoretical
treatmentofatoms. Aimingmainlyatanappropriatedescriptionofatomic
systems, these original developments did not take into
consideration E- stein'stheoryofspecialrelativity.
WiththeworkofDirac,Heisenberg,and
Pauliitsoonbecameobviousthatauni?edtreatmentofrelativisticandqu-
tume?ectsisachievedbymeansoflocalquantum?eldtheory,i. e.
anintrinsic many-particletheory.
Mostofourpresentunderstandingoftheelementary
buildingblocksofmatterandtheforcesbetweenthemisbasedonthequ-
tizedversionof?eldtheorieswhicharelocallysymmetricundergaugetra-
formations. Nowadays,theprevailingtoolsforquantum-?eldtheoreticalc-
culationsarecovariantperturbationtheoryandfunctional-integralmethods.
Beingnotmanifestlycovariant,theHamiltonianapproachtoquantum-?eld
theorieslagssomewhatbehind,althoughitresemblesverymuchthefamiliar
nonrelativisticquantummechanicsofpointparticles.
Aparticularlyintere-
ingHamiltonianformulationofquantum-?eldtheoriesisobtainedbyqu-
tizingthe?eldsonhypersurfacesoftheMinkowsispacewhicharetangential
tothelightcone. The"timeevolution"ofthesystemisthenconsideredin +
"light-conetime"x =t+z/c. Theappealingfeaturesof"light-conequ-
tization",whicharethereasonsfortherenewedinterestinthisformulation
ofquantum?eldtheories,werehighlightedinthelecturesofBernardBakker
andThomasHeinzl. Oneoftheopenproblemsoflight-conequantizationis
theissueofspontaneoussymmetrybreaking. Thiscanbetracedbacktozero
modeswhich,ingeneral,aresubjecttocomplicatedconstraintequations. A
generalformalismforthequantizationofphysicalsystemswithconstraints
waspresentedbyJohnKlauder. Theperturbativede?nitionofquantum?eld
theoriesisingenerala?ictedbysingularitieswhichareovercomebyare-
larizationandrenormalizationprocedure.
Structuralaspectsoftherenormal- VI Preface
izationprobleminthecaseofgaugeinvariant?eldtheorieswerediscussed
inthelectureofKlausSibold. Areviewofthemathematicsunderlyingthe
functional-integralquantizationwasgivenbyLudwigStreit.
Apartfromthetopicsincludedinthisvolumetherewerealsolectures
ontheKaluza-odingerpresentedhisfamouswaveequationand
Heisenbergcameupwithhisalgebraicapproachtothequantum-theoretical
treatmentofatoms. Aimingmainlyatanappropriatedescriptionofatomic
systems, these original developments did not take into
consideration E- stein'stheoryofspecialrelativity.
WiththeworkofDirac,Heisenberg,and
Pauliitsoonbecameobviousthatauni?edtreatmentofrelativisticandqu-
tume?ectsisachievedbymeansoflocalquantum?eldtheory,i. e.
anintrinsic many-particletheory.
Mostofourpresentunderstandingoftheelementary
buildingblocksofmatterandtheforcesbetweenthemisbasedonthequ-
tizedversionof?eldtheorieswhicharelocallysymmetricundergaugetra-
formations. Nowadays,theprevailingtoolsforquantum-?eldtheoreticalc-
culationsarecovariantperturbationtheoryandfunctional-integralmethods.
Beingnotmanifestlycovariant,theHamiltonianapproachtoquantum-?eld
theorieslagssomewhatbehind,althoughitresemblesverymuchthefamiliar
nonrelativisticquantummechanicsofpointparticles.
Aparticularlyintere-
ingHamiltonianformulationofquantum-?eldtheoriesisobtainedbyqu-
tizingthe? eldsonhypersurfacesoftheMinkowsispacewhicharetangential
tothelightcone. The"timeevolution"ofthesystemisthenconsideredin +
"light-conetime"x =t+z/c. Theappealingfeaturesof"light-conequ-
tization",whicharethereasonsfortherenewedinterestinthisformulation
ofquantum?eldtheories,werehighlightedinthelecturesofBernardBakker
andThomasHeinzl. Oneoftheopenproblemsoflight-conequantizationis
theissueofspontaneoussymmetrybreaking. Thiscanbetracedbacktozero
modeswhich,ingeneral,aresubjecttocomplicatedconstraintequations. A
generalformalismforthequantizationofphysicalsystemswithconstraints
waspresentedbyJohnKlauder. Theperturbativede?nitionofquantum?eld
theoriesisingenerala?ictedbysingularitieswhichareovercomebyare-
larizationandrenormalizationprocedure.
Structuralaspectsoftherenormal- VI Preface
izationprobleminthecaseofgaugeinvariant?eldtheorieswerediscussed
inthelectureofKlausSibold. Areviewofthemathematicsunderlyingthe
functional-integralquantizationwasgivenbyLudwigStreit.
Apartfromthetopicsincludedinthisvolumetherewerealsolectures
ontheKaluza-Kleinprogramforsupergravity(P. vanNieuwenhuizen),on
dynamicalr-matricesandquantization(A. Alekseev),andonthequantum
Liouvillemodelasaninstructiveexampleofquantumintegrablemodels(L.
Faddeev). Inaddition,theschoolwascomplementedbymanyexcellents-
inars. Thelistofseminarspeakersandthetopicsaddressedbythemcanbe
foundattheendofthisvolume. Theinterestedreaderisrequestedtocontact
thespeakersdirectlyfordetailedinformationorpertinentmaterial.
Finally,wewouldliketoexpressourgratitudetothelecturersforalltheir
e?ortsandtothemainsponsorsoftheschool,theAustrianMinistryofE-
cation,Science,andCultureandtheGovernmentofStyria,forprovidingg-
eroussupport. Wealsoappreciatethevaluableorganizationalandtechnical
assistanceofthetownofSchladming,theSteyr-Daimler-PuchFahrzeugte-
nik, Ricoh Austria, Styria Online, and the Hornig company.
Furthermore, wethankoursecretaries,S. FuchsandE.
Monschein,anumberofgra-
atestudentsfromourinstitute,and,lastbutnotleast,ourcolleaguesfrom
theorganizingcommitteefortheirassistanceinpreparingandrunningthe
school. Graz, HeimoLatal March2001 WolfgangSchweiger Contents
FormsofRelativisticDynamics BernardL. G. Bakker...1 1
Introduction...1 2 ThePoincar'eGroup...3 3
FormsofRelativisticDynamics...4 3. 1
ComparisonofInstantForm,FrontForm,andPointForm...6 4
Light-FrontDynamics...9 4. 1 RelativeMomentum,InvariantMass...9 4.
2 TheBoxDiagram...14 5 Poincar'eGeneratorsinFieldTheory...19 5. 1
FermionsInteractingwithaScalarField...20 5. 2 InstantForm...20 5. 3
FrontForm(LF)...21 5. 4
InteractingandNon-interactingGeneratorsonanInstant
andontheLightFront...22 6 Light-FrontPerturbationTheory...23 6. 1
ConnectionofCovariantAmplitudes toLight-FrontAmplitudes...24 6. 2
Regularization...26 6. 3 MinusRegularization...26 7
TriangleDiagraminYukawaTheory...27 7. 1 CovariantCalculation ...28
7. 2 ConstructionoftheCurrentinLFD...30 7. 3 NumericalResults...37
3 8 FourVariationsonaThemein? Theory...37 8. 1
CovariantCalculation...39 8. 2 Instant-FormCalculation...42 8. 3
CalculationinLight-FrontCoordinates...47 8. 4
Front-FormCalculation...49 9
DimensionalRegularization:BasicFormulae...51 10
Four-DimensionalIntegration...52 11 SomeUsefulIntegrals...53
References...53 VIII Contents
Light-ConeQuantization:FoundationsandApplications ThomasHeinzl...
General
Is the information for this product incomplete, wrong or inappropriate?
Let us know about it.
Does this product have an incorrect or missing image?
Send us a new image.
Is this product missing categories?
Add more categories.
Review This Product
No reviews yet - be the first to create one!