![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Quantum physics (quantum mechanics)
Metaphysicians should pay attention to quantum mechanics. Why? Not because it provides definitive answers to many metaphysical questions-the theory itself is remarkably silent on the nature of the physical world, and the various interpretations of the theory on offer present conflicting ontological pictures. Rather, quantum mechanics is essential to the metaphysician because it reshapes standard metaphysical debates and opens up unforeseen new metaphysical possibilities. Even if quantum mechanics provides few clear answers, there are good reasons to think that any adequate understanding of the quantum world will result in a radical reshaping of our classical world-view in some way or other. Whatever the world is like at the atomic scale, it is almost certainly not the swarm of particles pushed around by forces that is often presupposed. This book guides readers through the theory of quantum mechanics and its implications for metaphysics in a clear and accessible way. The theory and its various interpretations are presented with a minimum of technicality. The consequences of these interpretations for metaphysical debates concerning realism, indeterminacy, causation, determinism, holism, and individuality (among other topics) are explored in detail, stressing the novel form that the debates take given the empirical facts in the quantum domain. While quantum mechanics may not deliver unconditional pronouncements on these issues, the range of possibilities consistent with our knowledge of the empirical world is relatively small-and each possibility is metaphysically revisionary in some way. This book will appeal to researchers, students, and anybody else interested in how science informs our world-view.
Niels Bohr and the Quantum Atom is the first book that focuses in detail on the birth and development of Bohr's atomic theory and gives a comprehensive picture of it. At the same time it offers new insight into Bohr's peculiar way of thinking, what Einstein once called his 'unique instinct and tact'. Contrary to most other accounts of the Bohr atom, the book presents it in a broader perspective which includes the reception among other scientists and the criticism launched against it by scientists of a more conservative inclination. Moreover, it discusses the theory as Bohr originally conceived it, namely, as an ambitious theory covering the structure of atoms as well as molecules. By discussing the theory in its entirety it becomes possible to understand why it developed as it did and thereby to use it as an example of the dynamics of scientific theories.
This book bridges a gap between two major communities of Condensed Matter Physics, Semiconductors and Superconductors, that have thrived independently. Through an original perspective that their key particles, excitons and Cooper pairs, are composite bosons, the authors raise fundamental questions of current interest: how does the Pauli exclusion principle wield its power on the fermionic components of bosonic particles at a microscopic level and how this affects the macroscopic physics? What can we learn from Wannier and Frenkel excitons and from Cooper pairs that helps us understand "bosonic condensation" of composite bosons and its difference from Bose-Einstein condensation of elementary bosons? The authors start from solid mathematical and physical foundation to derive excitons and Cooper pairs. They further introduce Shiva diagrams as a graphic support to grasp the many-body physics induced by fermion exchange - a novel mechanism not visualized by standard Feynman diagrams. Advanced undergraduate or graduate students in physics with no prior background will benefit from this book. The developed concepts and methodology should also be useful to present researches on ultracold atomic gases, exciton-polaritons, and quantum information.
This is a new volume of original essays on the metaphysics of quantum mechanics. The essays address questions such as: What fundamental metaphysics is best motivated by quantum mechanics? What is the ontological status of the wave function? Does quantum mechanics support the existence of any other fundamental entities, e.g. particles? What is the nature of the fundamental space (or space-time manifold) of quantum mechanics? What is the relationship between the fundamental ontology of quantum mechanics and ordinary, macroscopic objects like tables, chairs, and persons? The volume includes a comprehensive introduction with a history of quantum mechanics and the debate over its metaphysical interpretation focusing especially on the main realist alternatives.
Quantum optics, i.e. the interaction of individual photons with
matter, began with the discoveries of Planck and Einstein, but in
recent years, it has expanded beyond pure physics to become an
important driving force for technological innovation. This book
serves the broader readership growing out of this development by
starting with an elementary description of the underlying physics
and then building up a more advanced treatment. The reader is led
from the quantum theory of the simple harmonic oscillator to the
application of entangled states to quantum information
processing.
A series of seminal technological revolutions has led to a new generation of electronic devices miniaturized to such tiny scales where the strange laws of quantum physics come into play. There is no doubt that, unlike scientists and engineers of the past, technology leaders of the future will have to rely on quantum mechanics in their everyday work. This makes teaching and learning the subject of paramount importance for further progress. Mastering quantum physics is a very non-trivial task and its deep understanding can only be achieved through working out real-life problems and examples. It is notoriously difficult to come up with new quantum-mechanical problems that would be solvable with a pencil and paper, and within a finite amount of time. This book remarkably presents some 700+ original problems in quantum mechanics together with detailed solutions covering nearly 1000 pages on all aspects of quantum science. The material is largely new to the English-speaking audience. The problems have been collected over about 60 years, first by the lead author, the late Prof. Victor Galitski, Sr. Over the years, new problems were added and the material polished by Prof. Boris Karnakov. Finally, Prof. Victor Galitski, Jr., has extended the material with new problems particularly relevant to modern science.
Analytical Mechanics for Relativity and Quantum Mechanics is an
innovative and mathematically sound treatment of the foundations of
analytical mechanics and the relation of classical mechanics to
relativity and quantum theory. It is intended for use at the
introductory graduate level. A distinguishing feature of the book
is its integration of special relativity into teaching of classical
mechanics. After a thorough review of the traditional theory, Part
II of the book introduces extended Lagrangian and Hamiltonian
methods that treat time as a transformable coordinate rather than
the fixed parameter of Newtonian physics. Advanced topics such as
covariant Langrangians and Hamiltonians, canonical transformations,
and Hamilton-Jacobi methods are simplified by the use of this
extended theory. And the definition of canonical transformation no
longer excludes the Lorenz transformation of special relativity.
This book is aimed at providing a coherent, essentially self-contained, rigorous and comprehensive abstract theory of Feynman's operational calculus for noncommuting operators. Although it is inspired by Feynman's original heuristic suggestions and time-ordering rules in his seminal 1951 paper An operator calculus having applications in quantum electrodynamics, as will be made abundantly clear in the introduction (Chapter 1) and elsewhere in the text, the theory developed in this book also goes well beyond them in a number of directions which were not anticipated in Feynman's work. Hence, the second part of the main title of this book. The basic properties of the operational calculus are developed and certain algebraic and analytic properties of the operational calculus are explored. Also, the operational calculus will be seen to possess some pleasant stability properties. Furthermore, an evolution equation and a generalized integral equation obeyed by the operational calculus are discussed and connections with certain analytic Feynman integrals are noted. This volume is essentially self-contained and we only assume that the reader has a reasonable, graduate level, background in analysis, measure theory and functional analysis or operator theory. Much of the necessary remaining background is supplied in the text itself.
This is a textbook on the theory and calculation of molecular
electromagnetic and spectroscopic properties designed for a
one-semester course with lectures and exercise classes. The idea of
the book is to provide thorough background knowledge for the
calculation of electromagnetic and spectroscopic properties of
molecules with modern quantum chemical software packages.
This textbook describes the physics of semiconductor nanostructures
with emphasis on their electronic transport properties. At its
heart are five fundamental transport phenomena: quantized
conductance, tunnelling transport, the Aharonov-Bohm effect, the
quantum Hall effect, and the Coulomb blockade effect.
The book provides a unifying insight into fluctuation phenomena in a broad variety of vibrational systems of current interest. It consists of individual chapters written by leading experts in the field. The chapters are self-contained and complement each other. The ongoing rapid development of well-characterized mesoscopic vibrational systems has made it possible to address fundamental physics problems and to explore new approaches to quantum and classical measurements, with applications to quantum information, condensed matter physics, and engineering. The book gives an account of major results in this direction. The topics include dynamics and quantum control of microcavity modes coupled to qubits, measurements with bifurcation-based amplifiers and new types of such amplifiers; switching rate scaling and new quantum mechanisms of metastable decay; wave mixing and parametric excitation in the quantum regime; collective phenomena and the interaction-induced discrete time symmetry breaking; and back-action and shot noise in electron-vibrational systems.
Trace and determinant functionals on operator algebras provide a means of constructing invariants in analysis, topology, differential geometry, analytic number theory, and quantum field theory. The consequent developments around such invariants have led to significant advances both in pure mathematics and theoretical physics. As the fundamental tools of trace theory have become well understood and clear general structures have emerged, so the need for specialist texts which explain the basic theoretical principles and computational techniques has become increasingly urgent. Providing a broad account of the theory of traces and determinants on algebras of differential and pseudodifferential operators over compact manifolds, this text is the first to deal with trace theory in general, encompassing a number of the principle applications and backed up by specific computations which set out in detail the nuts-and-bolts of the basic theory. Both the microanalytic approach to traces and determinants via pseudodifferential operator theory and the more computational approach directed by applications in geometric analysis, are developed in a general framework that will be of interest to mathematicians and physicists in a number of different fields.
Quantum City explores the metaphorical relationships between quantum theory, urban design and the concept of the city, with a very serious aim: to radically change the way the urban realm is both experienced and designed.Using the terminology and themes of quantum theory and the 'new physics', the author draws the reader into an intriguing discussion of the principles, practices and operations of urbanism. This new language offers the missing interface between the different disciplines of the city, and promises to be a potent metaphor for the development of various theories for the 21st century city.Challenging traditional approaches to the theory of cities, this thought-provoking book will be enjoyed by both design professionals and anyone interested in the city, its history and culture.
The second edition of this successful textbook provides an
up-to-date account of the optical physics of solid state materials.
The basic principles of absorption, reflection, luminescence, and
light scattering are covered for a wide range of materials,
including insulators, semiconductors and metals. The text starts
with a review of classical optics, and then moves on to the
treatment of optical transition rates by quantum theory. In
addition to the traditional discussion of crystalline materials,
glasses and molecular solids are also covered.
A NEW YORK TIMES BESTSELLER Do we have free will? Is the universe compatible with God? Do we live in a computer simulation? Does the universe think? Physicists are great at complicated research, but they are less good at telling us why it matters. In this entertaining and groundbreaking book, theoretical physicist Sabine Hossenfelder breaks down why we should care. Drawing on the latest research in quantum mechanics, black holes, string theory and particle physics, Existential Physics explains what modern physics can tell us about the big questions. Filled with counterintuitive insights and including interviews with other leading scientists, this clear and yet profound book will reshape your understanding of science and the limits of what we can know.
As an introductory account of the theory of phase transitions and critical phenomena, Elements of Phase Transitions and Critical Phenomena reflects lectures given by the authors to graduate students at their departments and is thus classroom-tested to help beginners enter the field. Most parts are written as self-contained units and every new concept or calculation is explained in detail without assuming prior knowledge of the subject. The book significantly enhances and revises a Japanese version which is a bestseller in the Japanese market and is considered a standard textbook in the field. It contains new pedagogical presentations of field theory methods, including a chapter on conformal field theory, and various modern developments hard to find in a single textbook on phase transitions. Exercises are presented as the topics develop, with solutions found at the end of the book, making the text useful for self-teaching, as well as for classroom learning.
This book gathers the lecture notes of courses given at the 2011 summer school in theoretical physics in Les Houches, France, Session XCVI. What is a quantum machine? Can we say that lasers and transistors are quantum machines? After all, physicists advertise these devices as the two main spin-offs of the understanding of quantum mechanical phenomena. However, while quantum mechanics must be used to predict the wavelength of a laser and the operation voltage of a transistor, it does not intervene at the level of the signals processed by these systems. Signals involve macroscopic collective variables like voltages and currents in a circuit or the amplitude of the oscillating electric field in an electromagnetic cavity resonator. In a true quantum machine, the signal collective variables, which both inform the outside on the state of the machine and receive controlling instructions, must themselves be treated as quantum operators, just as the position of the electron in a hydrogen atom. Quantum superconducting circuits, quantum dots, and quantum nanomechanical resonators satisfy the definition of quantum machines. These mesoscopic systems exhibit a few collective dynamical variables, whose fluctuations are well in the quantum regime and whose measurement is essentially limited in precision by the Heisenberg uncertainty principle. Other engineered quantum systems based on natural, rather than artificial degrees of freedom can also qualify as quantum machines: trapped ions, single Rydberg atoms in superconducting cavities, and lattices of ultracold atoms. This book provides the basic knowledge needed to understand and investigate the physics of these novel systems.
While quantum theory has been used to study the physical universe with great profit, both intellectual and financial, ever since its discovery eighty-five years ago, over the last fifty years we have found out more and more about the theory itself, and what it tells us about the universe. It seems we may have to accept non-locality - cause and effect may be light-years apart; loss of realism - nature may be fundamentally probabilistic; and non-determinism - it seems that God does play dice! This book, totally up-to-date and written by an expert in the field, explains the emergence of our new perspective on quantum theory, but also describes how the ideas involved in this re-evaluation led seamlessly to a totally new discipline - quantum information theory. This discipline includes quantum computation, which is able to perform tasks quite out of the range of other computers; the totally secure algorithms of quantum cryptography; and quantum teleportation - as part of science fact rather than science fiction. The book is the first to combine these elements, and will be of interest to anybody interested in fundamental aspects of science and their application to the real world.
Today, computation is an essential component of every technology. However, there has not been much research on quantum computing, even though it has the capability to solve complex problems in an efficient way. Further study is required to fully understand the uses and benefits of this technology. The Handbook of Research on Quantum Computing for Smart Environments presents investigating physical realizations of quantum computers, encoders, and decoders, including photonic quantum realization, cavity quantum electrodynamics, and many more topics on Bits to Qubits. Covering key topics such as machine learning, software, quantum algorithms, and neural networks, this major reference work is ideal for engineers, computer scientists, physicists, mathematicians, researchers, academicians, scholars, practitioners, instructors, and students.
Despite the differences of their subject matter, science and
theology have a cousinly relationship, John Polkinghorne contends
in his latest thought-provoking book. From his unique perspective
as both theoretical physicist and Anglican priest, Polkinghorne
considers aspects of quantum physics and theology and demonstrates
that the two truth-seeking enterprises are engaged in analogous
rational techniques of inquiry. His exploration of the deep
connections between science and theology shows with new clarity a
common kinship in the search for truth.
The Industrial Revolution meets the quantum-technology revolution! A steampunk adventure guide to how mind-blowing quantum physics is transforming our understanding of information and energy. Victorian era steam engines and particle physics may seem worlds (as well as centuries) apart, yet a new branch of science, quantum thermodynamics, reenvisions the scientific underpinnings of the Industrial Revolution through the lens of today's roaring quantum information revolution. Classical thermodynamics, understood as the study of engines, energy, and efficiency, needs reimagining to take advantage of quantum mechanics, the basic framework that explores the nature of reality by peering at minute matters, down to the momentum of a single particle. In her exciting new book, intrepid Harvard-trained physicist Dr. Nicole Yunger Halpern introduces these concepts to the uninitiated with what she calls "quantum steampunk," after the fantastical genre that pairs futuristic technologies with Victorian sensibilities. While readers follow the adventures of a rag-tag steampunk crew on trains, dirigibles, and automobiles, they explore questions such as, "Can quantum physics revolutionize engines?" and "What deeper secrets can quantum information reveal about the trajectory of time?" Yunger Halpern also describes her own adventures in the quantum universe and provides an insider's look at the work of the scientists obsessed with its technological promise. Moving from fundamental physics to cutting-edge experimental applications, Quantum Steampunk explores the field's aesthetic, shares its whimsy, and gazes into the potential of a quantum future. The result is a blast for fans of science, science fiction, and fantasy.
The concepts of the Electron Statistics (ES) and the ES dependent electronic properties are basic pillars in semiconductor electronics and this first-of-its-kind book deals with the said concepts in doping superlattices (SLs), quantum well, quantum wire and quantum dot SLs, effective mass SLs, SLs with graded interfaces and Fibonacci SLs under different physical conditions respectively. The influences of intense radiation and strong electric fields under said concepts have been considered together with the heavily doped SLs in this context on the basis of newly formulated the electron energy spectra in all the cases. We have suggested experimental determinations of the Einstein relation for the Diffusivity-Mobility ratio, the Debye screening length, Elastic Constants and the content of this book finds 25 different applications in the arena of nanoscience and nanotechnology.This book contains hundred open research problems which form the integral part of the text and are useful for both PhD aspirants and researchers. It is written for post graduate students of various departments of different academic organizations, engineers and professionals in the fields of solid state electronics, materials science, solid state sciences, nano-science, nanotechnology and nano materials in general. |
![]() ![]() You may like...
Research Anthology on Advancements in…
Information Resources Management Association
Hardcover
R11,492
Discovery Miles 114 920
|