![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Quantum physics (quantum mechanics)
This work describes theoretical and experimental advances towards the realization of a hybrid quantum processor in which the collective degrees of freedom of an ensemble of spins in a crystal are used as a multi-qubit register for superconducting qubits. A memory protocol made of write, read and reset operations is first presented, followed by the demonstration of building blocks of its implementation with NV center spins in diamond. Qubit states are written by resonant absorption of a microwave photon in the spin ensemble and read out of the memory on-demand by applying Hahn echo refocusing techniques to the spins. The reset step is implemented in between two successive write-read sequences using optical repumping of the spins.
In the letters contained in this book, David Bohm argues that the dominant formal, mathematical approach in physics is seriously flawed. In the 1950s and 60s, Bohm took a direction unheard of for a professor of theoretical physics: while still researching in physics, working among others with Yakir Aharanov and later Jeffrey Bub, he also spent time studying "metaphysics"-such as Hegel's dialectics and Indian panpsychism. 50 years on, questions raised about the direction and philosophical assumptions of theoretical physics show that Bohm's arguments still have contemporary relevance.
This book is based on the author's work at the Double Chooz Experiment, from 2010 to 2013, the goal of which was to search for electronic anti-neutrino disappearance close to nuclear power plant facilities as a result of neutrino oscillation. Starting with a brief review of neutrino oscillation and the most important past experimental findings in this field, the author subsequently provides a full and detailed description of a neutrino detector, from simulation aspects to detection principles, as well as the data analysis procedure used to extract the oscillation parameters. The main results in this book are 1) an improvement on the mixing angle, 13, uncertainty by combining two data-sets from neutrino event selection: neutron capture on gadolinium and on hydrogen; and 2) the first measurement of the effective squared mass difference by combining the current reactor neutrino experimental data from Daya Bay, Double Chooz and RENO and taking advantage of their different reactor-to-detector distances. The author explains how these methods of combining data can be used to estimate these two values. Each method results in the best possible sensitivity for the oscillation parameters with regard to reactor neutrinos. They can be used as a standard method on the latest data releases from the current experiments.
This book is a collection of problems that are intended to aid students in graduate and undergraduate courses in Classical and Quantum Physics. It is also intended to be a study aid for students that are preparing for the PhD qualifying exam. Many of the included problems are of a type that could be on a qualifying exam. Others are meant to elucidate important concepts. Unlike other compilations of problems, the detailed solutions are often accompanied by discussions that reach beyond the specific problem.The solution of the problem is only the beginning of the learning process--it is by manipulation of the solution and changing of the parameters that a great deal of insight can be gleaned. The authors refer to this technique as "massaging the problem," and it is an approach that the authors feel increases the pedagogical value of any problem.
Quantum physics started in the 1920's with wave mechanics and the wave-particle duality. However, the last 20 years have seen a second quantum revolution, centered around non-locality and quantum correlations between measurement outcomes. The associated key property, entanglement, is recognized today as the signature of quantumness. This second revolution opened the possibility of studying quantum correlations without any assumption on the internal functioning of the measurement apparata, the so-called Device-Independent Approach to Quantum Physics. This thesis explores this new approach using the powerful geometrical tool of polytopes. Emphasis is placed on the study of non-locality in the case of three or more parties, where it is shown that a whole new variety of phenomena appear compared to the bipartite case. Genuine multiparty entanglement is also studied for the first time within the device-independent framework. Finally, these tools are used to answer a long-standing open question: could quantum non-locality be explained by influences that propagate from one party to the others faster than light, but that remain hidden so that one cannot use them to communicate faster than light? This would provide a way around Einstein's notion of action at a distance that would be compatible with relativity. However, the answer is shown to be negative, as such influences could not remain hidden."
This book introduces a variety of statistical tools for characterising and designing the dynamical features of complex quantum systems. These tools are applied in the contexts of energy transfer in photosynthesis, and boson sampling. In dynamical quantum systems, complexity typically manifests itself via the interference of a rapidly growing number of paths that connect the initial and final states. The book presents the language of graphs and networks, providing a useful framework to discuss such scenarios and explore the rich phenomenology of transport phenomena. As the complexity increases, deterministic approaches rapidly become intractable, which leaves statistics as a viable alternative.
This book presents two analyses, the first of which involves the search for a new heavy charged gauge boson, a so-called W' boson. This new gauge boson is predicted by some theories extending the Standard Model gauge group to solve some of its conceptual problems. Decays of the W' boson in final states with a lepton ( +/- = e+/- , +/-) and the corresponding (anti-)neutrino are considered. Data collected by the ATLAS experiment in 2015 at a center of mass energy of s =13 TeV is used for the analysis. In turn, the second analysis presents a measurement of the double-differential cross section of the process pp->Z/gamma^* + X -> l^+l^- + X, including a gamma gamma induced contribution, at a center of mass energy of sqrt{s} = 8 TeV. The measurement is performed in an invariant mass region of 116 GeV to 1500 GeV as a function of invariant mass and absolute rapidity of the l^+l^-- pair, and as a function of invariant mass and pseudorapidity separation of the l^+l^-- pair. The data analyzed was recorded by the ATLAS experiment in 2012 and corresponds to an integrated luminosity of 20.3/fb. It is expected that the measured cross sections are sensitive to the PDFs at very high values of the Bjorken-x scaling variable, and to the photon structure of the proton.
This text presents the two complementary aspects of thermal physics as an integrated theory of the properties of matter. Conceptual understanding is promoted by thorough development of basic concepts. In contrast to many texts, statistical mechanics, including discussion of the required probability theory, is presented first. This provides a statistical foundation for the concept of entropy, which is central to thermal physics. A unique feature of the book is the development of entropy based on Boltzmann's 1877 definition; this avoids contradictions or ad hoc corrections found in other texts. Detailed fundamentals provide a natural grounding for advanced topics, such as black-body radiation and quantum gases. An extensive set of problems (solutions are available for lecturers through the OUP website), many including explicit computations, advance the core content by probing essential concepts. The text is designed for a two-semester undergraduate course but can be adapted for one-semester courses emphasizing either aspect of thermal physics. It is also suitable for graduate study.
Every form of life is coded by the genetic code. Life continually changes and evolves. However, the language of the Code does not change. A billion years ago, the primitive life forms on Earth spoke the same body language as they do today. They used the same Code. Nothing has changed. Is this Code eternal? What are the principles of its design? Of course, some will even ask, who designed it? In order to respond to these questions, the book takes an unexpected tack. It develops the proposition that "two takes" are necessary in order to understand reality, a left side take, and a right side take. All of present day sciences, including mathematics are based on the left side take on reality. All of the languages of present day science, including conventional mathematics, are "left side" languages. The book develops the foundations for another kind of science, the "right side" science. We call it the First Science. The book argues that the language for this right side unifying science is none other than the Code. It is here that the story becomes quite extravagant. This Code is so generic that it can code literally anything, not just the biological. In this perspective, the life principle permeates just about everything that exists. The origin of the First Science goes back to Aristotle, and even before. According to Aristotle, the First Science was even supposed to provide knowledge of God. The book explores this ancient territory with modern eyes and ends up revealing a new science and a new kind of geometry. The science is proposed as the unifying science, not only of matter and mathematics, but of consciousness and the generic form of things.
This book provides the mathematical foundations of the theory of hyperhamiltonian dynamics, together with a discussion of physical applications. In addition, some open problems are discussed. Hyperhamiltonian mechanics represents a generalization of Hamiltonian mechanics, in which the role of the symplectic structure is taken by a hyperkahler one (thus there are three Kahler/symplectic forms satisfying quaternionic relations). This has proved to be of use in the description of physical systems with spin, including those which do not admit a Hamiltonian formulation. The book is the first monograph on the subject, which has previously been treated only in research papers.
This highly interdisciplinary thesis covers a wide range of topics relating to the interface of cold atoms, quantum simulation, quantum magnetism and disorder. With a self-contained presentation, it provides a broad overview of the rapidly evolving area of cold atoms and is of interest to both undergraduates and researchers working in the field. Starting with a general introduction to the physics of cold atoms and optical lattices, it extends the theory to that of systems with different multispecies atoms. It advances the theory of many-body quantum systems in excited bands (of optical lattices) through an extensive study of the properties of both the mean-field and strongly correlated regimes. Particular emphasis is given to the context of quantum simulation, where as shown here, the orbital degree of freedom in excited bands allows the study of exotic models of magnetism not easily achievable with the previous alternative systems. In addition, it proposes a new model Hamiltonian that serves as a quantum simulator of various disordered systems in different symmetry classes that can easily be reproduced experimentally. This is of great interest, especially for the study of disorder in 2D quantum systems.
This book describes a promising approach to problems in the foundations of quantum mechanics, including the measurement problem. The dynamics of ensembles on configuration space is shown here to be a valuable tool for unifying the formalisms of classical and quantum mechanics, for deriving and extending the latter in various ways, and for addressing the quantum measurement problem. A description of physical systems by means of ensembles on configuration space can be introduced at a very fundamental level: the basic building blocks are a configuration space, probabilities, and Hamiltonian equations of motion for the probabilities. The formalism can describe both classical and quantum systems, and their thermodynamics, with the main difference being the choice of ensemble Hamiltonian. Furthermore, there is a natural way of introducing ensemble Hamiltonians that describe the evolution of hybrid systems; i.e., interacting systems that have distinct classical and quantum sectors, allowing for consistent descriptions of quantum systems interacting with classical measurement devices and quantum matter fields interacting gravitationally with a classical spacetime.
Based on the analytical methods and the computer programs presented in this book, all that may be needed to perform MRI tissue diagnosis is the availability of relaxometric data and simple computer program proficiency. These programs are easy to use, highly interactive and the data processing is fast and unambiguous. Laboratories (with or without sophisticated facilities) can perform computational magnetic resonance diagnosis with only T1 and T2 relaxation data. The results have motivated the use of data to produce data-driven predictions required for machine learning, artificial intelligence (AI) and deep learning for multidisciplinary and interdisciplinary research. Consequently, this book is intended to be very useful for students, scientists, engineers, the medical personnel and researchers who are interested in developing new concepts for deeper appreciation of computational magnetic resonance imaging for medical diagnosis, prognosis, therapy and management of tissue diseases.
..".The Multiversal book series is equally unique, providing book-length extensions of the lectures with enough additional depth for those who truly want to explore these fields, while also providing thekind of clarity that is appropriate for interested lay people to grasp the general principles involved." - Lawrence M. Krauss Cosmic Update Covers: A novel approach to uncover the dark faces of the Standard Model of cosmology.The possibility that Dark Energy and Dark Matter are manifestations of the inhomogeneous geometry of our Universe.On the history of cosmological model building and the general architecture of cosmological modes.Illustrations on the Large Scale Structure of the Universe.A new perspective on the classical static Einstein Cosmos.Global properties of World Models including their Topology.The Arrow of Time in a Universe with a Positive Cosmological Constant.Exploring the consequences of a fundamental Cosmological Constant for our Universe. Exploring why the current observed acceleration of the Universe may not be its final destiny.Demonstrating that nature forbids the existence of a pure Cosmological Constant.Our current understanding of the long term (in time scales that greatly exceed the current age of the Universe) future of the Universe.The long term fate and eventual destruction of the astrophysical objects that populate the universe --including clusters, galaxies, stars, planets, and black holes. The material is presented in a layperson-friendly language followed by addition technical sections that explain the basic equations and principles. This feature is very attractive to readers who want to learn more about the theories involved beyond the basic description. "Multiversal Journeys is a trademark of Farzad Nekoogar and Multiversal Journeys, a 501 (c) (3) nonprofit organization.""
Quarks are the main constituents of protons and neutrons and hence are important building blocks of all the matter that surrounds us. However, quarks have the intriguing property that they never appear as isolated single particles but only in bound states. This phenomenon is called confinement and has been a central research topic of elementary particle physics for the last few decades. In order to find the mechanism that forbids the existence of free quarks many approaches and ideas are being followed, but by now it has become clear that they are not mutually exclusive but illuminate the problem from different perspectives. Two such confinement scenarios are investigated in this thesis: Firstly, the importance of Abelian field components for the low-energy regime is corroborated, thus supporting the dual superconductor picture of confinement and secondly, the influence of the Gribov horizon on non-perturbative solutions is studied.
In this thesis, the main approach to the characterization of the set of classical probabilities, the correlation polytope approach, is reviewed for different scenarios, namely, hidden variable models discussed by Bell (local), Kochen and Specker (non-contextual), and Leggett and Garg (macrorealist). Computational difficulties associated with the method are described and a method to overcome them in several nontrivial cases is presented. For the quantum case, a general method to analyze quantum correlations in the sequential measurement scenario is provided, which allows computation of the maximal correlations. Such a method has a direct application for computation of maximal quantum violations of Leggett-Garg inequalities and it is relevant in the analysis of non-contextuality tests. Finally, possible applications of the results for quantum information tasks are discussed.
Dispersion forces acting on both atoms and bodies play a key role in modern nanotechnology. As demonstrated in this book, macroscopic quantum electrodynamics provides a powerful method for understanding and quantifying dispersion forces in a vast range of realistic scenarios. The basic physical concepts and theoretical steps allowfor thederivation ofoutlined general expressions for dispersion forces. As illustrated by a number of examples, these expressions can easily be used to study forces between objects of various shapes and materials, including effects like material absorption, nontrivial magnetic properties and dynamical forces asssociated with excited systems.
This thesis describes the experimental work that finally led to a successful measurement of coherent elastic neutrino-nucleus scattering-a process proposed forty-three years ago. The experiment was performed at the Spallation Neutron Source facility, sited at Oak Ridge National Laboratory, in Tennessee. Of all known particles, neutrinos distinguish themselves for being the hardest to detect, typically requiring large multi-ton devices for the job. The process measured here involves the difficult detection of very weak signals arising from nuclear recoils (tiny neutrino-induced "kicks" to atomic nuclei), but leads to a much larger probability of neutrino interaction when compared to all other known mechanisms. As a result of this, "neutrino technologies" using miniaturized detectors (the author's was handheld and weighed only 14 kg) become a possibility. A large community of researchers plans to continue studying this process, facilitating an exploration of fundamental neutrino properties that is presently beyond the sensitivity of other methods.
The second edition deals with all essential aspects of non-relativistic quantum physics up to the quantisation of fields. In contrast to common textbooks of quantum mechanics, modern experiments are described both for the purpose of foundation of the theory and in relation to recent applications. Links are made to important research fields and applications such as elementary particle physics, solid state physics and nuclear magnetic resonance in medicine, biology and material science. Special emphasis is paid to quantum physics in nanoelectronics such as resonant tunnelling, Coulomb blockade and the realisation of quantum bits. This second edition also considers quantum transport through quantum point contacts and its application as charge detectors in nanoelectronic circuits. Also the realization and the study of electronic properties of an artificial quantum dot molecule are presented. Because of its recent interest a brief discussion of Bose-Einstein condensation has been included, as well as the recently detected Higgs particle. Another essential new addition to the present book concerns a detailed discussion of the particle picture in quantum field theory. Counterintuitive aspects of single particle quantum physics such as particle-wave duality and the Einstein-Podolski-Rosen (EPR) paradox appear more acceptable to our understanding if discussed on the background of quantum field theory. The non-locality of quantum fields explains non-local behaviour of particles in classical Schroedinger quantum mechanics. Finally, new problems have been added. The book is suitable as an introduction into quantum physics, not only for physicists but also for chemists, biologists, engineers, computer scientists and even for philosophers as far as they are interested in natural philosophy and epistemology.
During the last thirty years a great advancement in low energy physics, particularly interactions of atoms with the electromagnetic field, has been achieved and the development of electronics and laser techniques has allowed to implement a fine manipulation of atoms with photons. A wealth of important applications has sprung out from the ability of manipulating large samples of cold atoms. Among them, the improvement of atomic clocks and the creation of atomic gyroscopes and of atomic gravity meters, which is obviously of great interest for geodesists and geophysicists, particularly for potential applications in satellite geodesy. This book explains the fundamental concepts necessary to understand atom manipulation by photons, including the principles of quantum mechanics. It is conceived as a road that leads the reader from classical physics (mechanics and electromagnetism, considered as a common scientific background of geodesists and geophysicists), to the basics of quantum mechanics in order to understand the dynamics of atoms falling in the gravity field, while interacting with suitably resonant laser beams. There are different types of measurements of gravity based on the manipulation of ultra-cold atoms; the book presents the principles of the instruments based on stimulated Raman transition, which can be easily worked out analytically. However, the concepts explained in the text can provide a good starting point to understand also the applications based on the so-called Block oscillations or on the Bose-Einstein condensation.
Quantum physics, in contrast to classical physics, allows non-locality and indeterminism in nature. Moreover, the role of the observer seems indispensable in quantum physics. In fact, quantum physics, unlike classical physics, suggests a metaphysics that is not physicalism (which is today's official metaphysical doctrine). As is well known, physicalism implies a reductive position in the philosophy of mind, specifically in its two core areas, the philosophy of consciousness and the philosophy of action. Quantum physics, in contrast, is compatible with psychological non-reductionism, and actually seems to support it. The essays in this book explore, from various points of view, the possibilities of basing a non-reductive philosophy of mind on quantum physics. In doing so, they not only engage with the ontological and epistemological aspects of the question but also with the neurophysiological ones.
This book describes research in two different areas of state-of-the-art hadron collider physics, both of which are of central importance in the field of particle physics. The first part of the book focuses on the search for supersymmetric particles called gluinos. The book subsequently presents a set of precision measurements of "multi-jet" collision events, which involve large numbers of newly created particles, and are among the dominant processes at the Large Hadron Collider (LHC). Now that a Higgs boson has been discovered at the LHC, the existence (or non-existence) of supersymmetric particles is of the utmost interest and significance, both theoretically and experimentally. In addition, multi-jet collision events are an important background process for a wide range of analyses, including searches for supersymmetry.
Since the discovery that atomic-size particles can be described as waves, many interference experiments have been realized with electrons to demonstrate their wave behavior. In this book, after describing the different steps that led to the present knowledge, we focus on the strong link existing between photon and electron interferences, highlighting the similarities and the differences. For example, the atomic centers of a hydrogen molecule are used to mimic the slits in the Young's famous interference experiment with light. We show, however, that the basic time-dependent ionization theories that describe these Young-type electron interferences are not able to reproduce the experiment. This crucial point remains a real challenge for theoreticians in atomic collision physics.
This volume provides a sample of the present research on the foundations of quantum mechanics and related topics by collecting the papers of the Italian scholars who attended the conference entitled "The Foundations of Quantum Mechanics -- Historical Analysis and Open Questions" (Lecce, 1998). The perspective of the book is interdisciplinary, and hence philosophical, historical and technical papers are gathered together so as to allow the reader to compare different viewpoints and cultural approaches. Most of the papers confront, directly or indirectly, the objectivity problem, taking into account the positions of the founders of QM or more recent developments. More specifically, the technical papers in the book pay special attention to the interpretation of the experiments on Bell's inequalities and to decoherence theory, but topics on unsharp QM, the consistent-history approach, quantum probability and alternative theories are also discussed. Furthermore, a number of historical and philosophical papers are devoted to Planck's Weyl's and Pauli's thought, but topics such as quantum ontology, predictivity of quantum laws, etc., are also treated. |
![]() ![]() You may like...
Statistical Applications from Clinical…
Jianchang Lin, Bushi Wang, …
Hardcover
R6,400
Discovery Miles 64 000
Computational Methods in Power System…
Reijer Idema, Domenico J. P. Lahaye
Hardcover
R3,400
Discovery Miles 34 000
|