![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Quantum physics (quantum mechanics)
A major outstanding problem in physics is understanding the nature of the dark energy that is driving the accelerating expansion of the Universe. This thesis makes a significant contribution by demonstrating, for the first time, using state-of-the-art computer simulations, that the interpretation of future galaxy survey measurements is far more subtle than is widely assumed, and that a major revision to our models of these effects is urgently needed. The work contained in the thesis was used by the WiggleZ dark energy survey to measure the growth rate of cosmic structure in 2011 and had a direct impact on the design of the surveys to be conducted by the European Space Agency's Euclid mission, a 650 million euro project to measure dark energy.
Recent developments in theoretical physics include new instances of the unification of quite different phenomena. The theoretical community is challenged by the growing interactions between high-energy physics, statistical physics, and condensed matter physics. The common language, though, is exact solutions of two-dimensional and conformable field theories. This volume is a faithful representation of this interdisciplinary domain. Conformable and integrable field theories have been active research topics for several decades. The main recent developments concern the boundary effects and applications to disordered systems. The number of applications of the exact methods to condensed-matter problems has been growing over the years. Nowadays it is widely recognized that strongly interacting systems in low dimensions can be successfully described by integrable and conformable theories. This volume is an indispensable aid to those seeking to find their way in this domain.
Playing a prominent role in communications, quantum science and laser physics, quantum nonlinear optics is an increasingly important field. This book presents a self-contained treatment of field quantization and covers topics such as the canonical formalism for fields, phase-space representations and the encompassing problem of quantization of electrodynamics in linear and nonlinear media. Starting with a summary of classical nonlinear optics, it then explains in detail the calculation techniques for quantum nonlinear optical systems and their applications, quantum and classical noise sources in optical fibers and applications of nonlinear optics to quantum information science. Supplemented by end-of-chapter exercises and detailed examples of calculation techniques in different systems, this book is a valuable resource for graduate students and researchers in nonlinear optics, condensed matter physics, quantum information and atomic physics. A solid foundation in quantum mechanics and classical electrodynamics is assumed, but no prior knowledge of nonlinear optics is required.
Quantum theory is the most successful of all physical theories: it has a towering mathematical structure, a vast range of accurate predictions, and technological applications. Its interpretation, however, is as unsettled now as in the heroic days of Einstein and Bohr. This book focuses on quantum non-locality, the curious quantum correlations between spatially separated systems. Quantum non-locality was one subject of the debates between Einstein, Bohr and others such as Schrodinger. The topic was revived in the 1960s as a result of Bell's epoch-making theorems; since then it has been a very active research field, both theoretically and experimentally. This book contains twenty new papers by eminent researchers, who report recent developments in both the physics of the subject and its philosophy. The physics topics covered include quantum information, the unsharp (positive-operator) approach to observables, the state-space approach, and the pilot-wave theory. The philosophy papers include precise studies of Bohr's reply to the original Einstein-Podolsky-Rosen non-locality paradox, and of non-locality's relation to causation, probability and modality."
Quantum Networks is focused on density matrix theory cast into a product operator representation, particularly adapted to describing networks of finite state subsystems. This approach is important for understanding non-classical aspects such as single subsystem and multi-subsystem entanglement. An intuitive picture evolves of how these features are generated and destroyed by interactions with the environment. This second edition has been revised and enlarged. For better clarity the text has been partly reorganized and figures and formulae are presented in a more attractive way.
This volume explores multiscale methods as applied to various areas of physics and to the relative developments in mathematics. In the last few years, multiscale methods have lead to spectacular progress in our understanding of complex physical systems and have stimulated the development of very refined mathematical techniques. At the same time on the experimental side, equally spectacular progress has been made in developing experimental machinery and techniques to test the foundations of quantum mechanics.
Tests of the current understanding of physics at the highest energies achievable in man-made experiments are performed at CERN's Large Hadron Collider. In the theory of the strong force within the Standard Model of particle physics - Quantum ChromoDynamics or QCD - confined quarks and gluons from the proton-proton scattering manifest themselves as groups of collimated particles. These particles are clustered into physically measurable objects called hadronic jets. As jets are widely produced at hadron colliders, they are the key physics objects for an early "rediscovery of QCD". This thesis presents the first jet measurement from the ATLAS Collaboration at the LHC and confronts the experimental challenges of precision measurements. Inclusive jet cross section data are then used to improve the knowledge of the momentum distribution of quarks and gluons within the proton and of the magnitude of the strong force.
A course in angular momentum techniques is essential for quantitative study of problems in atomic physics, molecular physics, nuclear physics and solid state physics. This book has grown out of such a course given to the students of the M. Sc. and M. Phil. degree courses at the University of Madras. An elementary knowledge of quantum mechanics is an essential pre-requisite to undertake this course but no knowledge of group theory is assumed on the part of the readers. Although the subject matter has group-theoretic origin, special efforts have been made to avoid the gro- theoretical language but place emphasis on the algebraic formalism dev- oped by Racah (1942a, 1942b, 1943, 1951). How far I am successful in this project is left to the discerning reader to judge. After the publication of the two classic books, one by Rose and the other by Edmonds on this subject in the year 1957, the application of angular momentum techniques to solve physical problems has become so common that it is found desirable to organize a separate course on this subject to the students of physics. It is to cater to the needs of such students and research workers that this book is written. A large number of questions and problems given at the end of each chapter will enable the reader to have a clearer understanding of the subject.
This thesis casts new light on quantum entanglement of photons with complex spatial patterns due to direct coincidence imaging. It demonstrates novel methods to generate, investigate, and verify entanglement of complex spatial structures. Quantum theory is one of the most successful and astonishing physical theories. It made possible various technical devices like lasers or mobile phones and, at the same time, it completely changed our understanding of the world. Interestingly, such counterintuitive features like entanglement are an important building block for future quantum technologies. In photonic experiments, the transverse spatial degree of freedom offers great potential to explore fascinating phenomena of single photons and quantum entanglement. It was possible to verify the entanglement of two photons with very high quanta of orbital angular momentum, a property of photons connected to their spatial structure and theoretically unbounded. In addition, modern imaging technology was used to visualize the effect of entanglement even in real-time and to show a surprising property: photons with complex spatial patterns can be both entangled and not entangled in polarization depending on their transverse spatial position.
"Nature performs not hing vainly, and makes nothing unnecessary" Aristotle Interest in the passage of charged particles through crystals first appeared at the beginning of this century following experiments on x-ray diffraction in crystallattices, which provided the proof of an ordered distribution of atoms in a crystal. Stark [1] put forward the hypothesis that certain directions in a crystal should be relatively transparent to charged particles. These first ideas on the channeling of charged particles in crystals were forgotten but became topical again in the early 1960s when the channeling effect was rediscovered by computer simulation [2] and in experiments [3] that revealed anomalously long ion ranges in crystals. The orientational ef fects during the passage of charged particles through crystals have been found for a whole range of processes characterized by small impact parameters for collisions between particles and atoms: nuclear reactions, large-angle scatter ing, energy losses. Lindhard explained the channeling of charged particles in crystals [4]. The results of the numerous investigations into the channeling of low-energy (amounting to several MeV) charged particles in crystals have been summarized in several monographs and reviews [5~8l.
Waves are everywhere in our daily life. We all experience sound and light with our ears and eyes, we use microwaves to cook, and radio waves are transmitted from and are received by our cell phones. These are just some examples of waves that carry energy from point A to B. However, we may not know details of the physics underlying all these waves. It is important to understand the mechanisms that generate wave dynamics for a given system. It is not straightforward to explain how an electromagnetic i eld becomes oscillatory and propagates as a wave. Waves sometimes represent the underlying dynamics of observed phenomena at a fundamental level of physics. This book is designed to explore these mechanisms by discussing various aspects of wave dynamics from as many perspectives as possible. The target audiences are undergraduate students majoring in engineering science and graduate students majoring in general engineering. Going beyond the typical approach to learning science, this book discusses wave dynamics and related concepts at various levels of mathematics and physics, sometimes touching on profound physics behind them. This book was written to help readers learn wave dynamics on a deep physical level, and develop innovative ideas in their own fields.
Quantum Structures and the Nature of Reality is a collection of papers written for an interdisciplinary audience about the quantum structure research within the International Quantum Structures Association. The advent of quantum mechanics has changed our scientific worldview in a fundamental way. Many popular and semi-popular books have been published about the paradoxical aspects of quantum mechanics. Usually, however, these reflections find their origin in the standard views on quantum mechanics, most of all the wave-particle duality picture. Contrary to relativity theory, where the meaning of its revolutionary ideas was linked from the start with deep structural changes in the geometrical nature of our world, the deep structural changes about the nature of our reality that are indicated by quantum mechanics cannot be traced within the standard formulation. The study of the structure of quantum theory, its logical content, its axiomatic foundation, has been motivated primarily by the search for their structural changes. Due to the high mathematical sophistication of this quantum structure research, no books have been published which try to explain the recent results for an interdisciplinary audience. This book tries to fill this gap by collecting contributions from some of the main researchers in the field. They reveal the steps that have been taken towards a deeper structural understanding of quantum theory.
An up-to-date description of progress and current problems with the
gravitational constant, both in terms of generalized gravitational
theories and experiments either in the laboratory, using Casimir
force measurements, or in space at solar system distances and in
cosmological observations.
This monograph describes global propagation of regular nonlinear hyperbolic waves described by first-order quasilinear hyperbolic systems in one dimension. The exposition is clear, concise, and unfolds systematically beginning with introductory material and leading to the original research of the authors. Topics are motivated with a number of physical examples from the areas of elastic materials, one-dimensional gas dynamics, and waves. Aimed at researchers and graduate students in partial differential equations and related topics, this book will stimulate further research and help readers further understand important aspects and recent progress of regular nonlinear hyperbolic waves.
Schr dinger Equations and Diffusion Theory addresses the
question "What is the Schr dinger equation?" in terms of diffusion
processes, and shows that the Schr dinger equation and diffusion
equations in duality are equivalent. In turn, Schr dinger's
conjecture of 1931 is solved. The theory of diffusion processes for
the Schr dinger equation tell us that we must go further into the
theory of systems of (infinitely) many interacting quantum
(diffusion) particles.
This collection of nearly forty essays in honor of the noted physicist and cosmologist Engelbert Schucking spans the gamut of research in Einsteins theory of general relativity and presents a lively and personal account of current work in the field. Indispensable for physicists involved in research in the field, the book includes important chapters by noted theorists such as A. Ashtekar, P.G. Bergmann, J. Ehlers, E.T. Newman, J.V. Narlikar, R. Penrose, D.W. Sciama, J. Stachel, and W. Rindler.
This second edition is fully updated, covering in particular new types of coherent states (the so-called Gazeau-Klauder coherent states, nonlinear coherent states, squeezed states, as used now routinely in quantum optics) and various generalizations of wavelets (wavelets on manifolds, curvelets, shearlets, etc.). In addition, it contains a new chapter on coherent state quantization and the related probabilistic aspects. As a survey of the theory of coherent states, wavelets, and some of their generalizations, it emphasizes mathematical principles, subsuming the theories of both wavelets and coherent states into a single analytic structure. The approach allows the user to take a classical-like view of quantum states in physics. Starting from the standard theory of coherent states over Lie groups, the authors generalize the formalism by associating coherent states to group representations that are square integrable over a homogeneous space; a further step allows one to dispense with the group context altogether. In this context, wavelets can be generated from coherent states of the affine group of the real line, and higher-dimensional wavelets arise from coherent states of other groups. The unified background makes transparent an entire range of properties of wavelets and coherent states. Many concrete examples, such as coherent states from semisimple Lie groups, Gazeau-Klauder coherent states, coherent states forthe relativity groups, and several kinds of wavelets, are discussed in detail. The book concludes with a palette of potentialapplications, from the quantum physically oriented, likethe quantum-classical transition or the construction of adequate states in quantum information, to the most innovative techniques to be used in data processing. Intended as an introduction to current research for graduate students and others entering the field, the mathematical discussion is self-contained. With its extensive references to the research literature, the first edition of the book is already a proven compendium for physicists and mathematicians active in the field, and with full coverage of the latest theory and results the revised second edition is even more valuable."
This book discusses particle physics and relativistic local field theory that is the main theoretical tool for analyzing particle physics. It is helpful for the professional physicist and to the serious graduate student of physics.
This edition has been completely revised to include some 20% of new material. Important recent developments such as the theory of Regge poles are now included. Many problems with solutions have been added to those already contained in the book.
One of the best ways to "lift the lid" on what is happening inside a given material is to study it using nuclear magnetic resonance (NMR). Of particular interest are NMR 1/T1 relaxation rates, which measure how fast energy stored in magnetic nuclei is transferred to surrounding electrons. This thesis develops a detailed, quantitative theory of NMR 1/T1 relaxation rates, and shows for the first time how they could be used to measure the speed at which energy travels in a wide range of magnetic materials. This theory is used to make predictions for"Quantum Spin Nematics", an exotic form of quantum order analogous to a liquid crystal. In order to do so, it is first necessary to unravel how spin nematics transport energy. This thesis proposes a new way to do this, based on the description of quarks in high-energy physics. Experiments to test the ideas presented are now underway in laboratories across the world.
For many physicists quantum theory contains strong conceptual difficulties, while for others the apparent conclusions about the reality of our physical world and the ways in which we discover that reality remain philosophically unacceptable. This book focuses on recent theoretical and experimental developments in the foundations of quantum physics, including topics such as the puzzles and paradoxes which appear when general relativity and quantum mechanics are combined; the emergence of classical properties from quantum mechanics; stochastic electrodynamics; EPR experiments and Bell's Theorem; the consistent histories approach and the problem of datum uniqueness in quantum mechanics; non-local measurements and teleportation of quantum states; quantum non-demolition measurements in optics and matter wave properties observed by neutron, electron and atomic interferometry. Audience: This volume is intended for graduate students of physics and those interested in the foundations of quantum theory.
This thesis analyses how supersymmetric (SUSY) extensions of the Standard Model (SM) of particle physics can be constrained using information from Higgs physics, electroweak precision observables and direct searches for new particles. Direct searches for SUSY particles at the LHC have not resulted in any signal so far, and limits on the SUSY parameter space have been set. Measurements of the properties of the observed Higgs boson at 125 GeV as well as of the W boson mass can provide valuable indirect constraints, supplementing the ones from direct searches. Precise calculations are performed for Higgs decays and electroweak precision observables within the minimal supersymmetric extension of the Standard Model and the next to-minimal supersymmetric extension of the Standard Model. Furthermore, a method is presented to reinterpret the LHC limits from direct SUSY searches in more realistic SUSY scenarios. The phenomenological consequences of those results are thoroughly analysed.
From the very beginning it was realised that quantum physics involves radically new interpretative and epistemological consequences. While hitherto there has been no satisfactory philosophical analysis of these consequences, recent years have witnessed the accomplishment of many experiments to test the foundations of quantum physics, opening up vistas to a completely novel technology: quantum technology. The contributions in the present volume review the interpretative situation, analyze recent fundamental experiments, and discuss the implications of possible future technological applications. Readership: Analytic philosophers (logical empiricists), scientists (especially physicists), historians of logic, mathematics and physics, philosophers of science, and advanced students and researchers in these fields. Can be used for seminars on theoretical and experimental physics and philosophy of science, and as supplementary reading at advanced undergraduate and graduate levels.
Here is an introduction to the theory of quantum groups with emphasis on the spectacular connections with knot theory and Drinfeld's recent fundamental contributions. It presents the quantum groups attached to SL2 as well as the basic concepts of the theory of Hopf algebras. Coverage also focuses on Hopf algebras that produce solutions of the Yang-Baxter equation and provides an account of Drinfeld's elegant treatment of the monodromy of the Knizhnik-Zamolodchikov equations.
Bohmian Mechanics was formulated in 1952 by David Bohm as a complete theory of quantum phenomena based on a particle picture. It was promoted some decades later by John S. Bell, who, intrigued by the manifestly nonlocal structure of the theory, was led to his famous Bell's inequalities. Experimental tests of the inequalities verified that nature is indeed nonlocal. Bohmian mechanics has since then prospered as the straightforward completion of quantum mechanics. This book provides a systematic introduction to Bohmian mechanics and to the mathematical abstractions of quantum mechanics, which range from the self-adjointness of the Schrodinger operator to scattering theory. It explains how the quantum formalism emerges when Boltzmann's ideas about statistical mechanics are applied to Bohmian mechanics. The book is self-contained, mathematically rigorous and an ideal starting point for a fundamental approach to quantum mechanics. It will appeal to students and newcomers to the field, as well as to established scientists seeking a clear exposition of the theory. |
You may like...
Design of Feedback Control Systems
Raymond T. Stefani, Bahram Shahian, …
Hardcover
R6,540
Discovery Miles 65 400
On Normalized Integral Table Algebras…
Zvi Arad, Xu Bangteng, …
Hardcover
R1,433
Discovery Miles 14 330
Data Science with Semantic Technologies…
Archana Patel, Narayan C Debnath
Hardcover
R4,917
Discovery Miles 49 170
Latin Squares - New Developments in the…
Jozsef Denes, A. Donald Keedwell
Hardcover
R1,961
Discovery Miles 19 610
Evolutionary Intelligence for Healthcare…
T. Ananth Kumar, R. Rajmohan, …
Hardcover
R1,438
Discovery Miles 14 380
The Theory of Error-Correcting Codes…
F.J. MacWilliams, N.J.A. Sloane
Hardcover
R1,399
Discovery Miles 13 990
Handbook of Research on Advanced…
Madhumangal Pal, Sovan Samanta, …
Hardcover
R6,710
Discovery Miles 67 100
Configuration Spaces - Geometry…
Filippo Callegaro, Frederick Cohen, …
Hardcover
|