Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Physics > Quantum physics (quantum mechanics)
The correlations between physical systems provide significant information about their collective behaviour - information that is used as a resource in many applications, e.g. communication protocols. However, when it comes to the exploitation of such correlations in the quantum world, identification of the associated 'resource' is extremely challenging and a matter of debate in the quantum community. This dissertation describes three key results on the identification, detection, and quantification of quantum correlations. It starts with an extensive and accessible introduction to the mathematical and physical grounds for the various definitions of quantum correlations. It subsequently focusses on introducing a novel unified picture of quantum correlations by taking a modern resource-theoretic position. The results show that this novel concept plays a crucial role in the performance of collaborative quantum computations that is not captured by the standard textbook approaches. Further, this new perspective provides a deeper understanding of the quantum-classical boundary and paves the way towards establishing a resource theory of quantum computations.
This book is meant to be a text for a ?rst course in quantum physics. It is assumed that the student has had courses in Modern Physics and in mathematics through differential equations. The book is otherwise self-contained and does not rely on outside resources such as the internet to supplement the material. SI units are used throughoutexcept for those topics for which atomic units are especially convenient. It is our belief that for a physics major a quantum physics textbook should be more than a one- or two-semester acquaintance. Consequently, this book contains material that, while germane to the subject, the instructor might choose to omit because of time limitations. There are topics and examples included that are not normally covered in introductory textbooks. These topics are not necessarily too advanced, they are simply not usually covered. We have not, however, presumed to tell the instructor which topics must be included and which may be omitted. It is our intention that omitted subjects are available for future reference in a book that is already familiar to its owner. In short, it is our hope that the student will use the book as a reference after having completed the course. We have included at the end of most chapters a "Retrospective" of the chapter. Thisis notmeanttobemerelya summary, but, rather, anoverviewoftheimportance ofthe material andits placein the contextofpreviousandforthcomingchapters.
Aimed at senior undergraduate and first-year graduate students in
departments of physics and astronomy, this textbook gives a
systematic treatment of atomic and molecular structure and spectra,
together with the effect of weak and strong external
electromagnetic fields.
The international bestseller from the author of Breakfast with Einstein Emmy is no ordinary dog. When adopted from the shelter by physics professor Chad Orzel, she becomes immediately fascinated by his work. Could she use quantum tunnelling to get through the neighbour's fence? How about diffracting round a tree to chase squirrels? Or using virtual particles to catch bunnies made of cheese? Taking Emmy's anarchic behaviour as a starting point, Orzel explains the key theories of quantum physics. From quarks and gluons to Heisenberg's uncertainty principle, this is a uniquely entertaining way to unlock the secrets of the universe.
This book presents the author's personal historical perspective and conceptual analysis on symmetry and geometry. The author enlightens with modern views the historical process which led to the contemporary vision of space and symmetry that are used in theoretical physics and in particular in such abstract and advanced descriptions of the physical world as those provided by supergravity. The book is written intertwining storytelling and philosophical argumentation with some essential technical material. The author argues that symmetry and geometry are inextricably entangled and their current meaning is the result of a long process of abstraction which was determined through history and can be understood within the analytic system of thought of western civilization that started with the Ancient Greeks. The evolution of geometry and symmetry theory in the last forty years has been deeply and constructively influenced by supersymmetry/supergravity and the allied constructions of strings and branes. Further advances in theoretical physics cannot be based simply on the Galilean method of interrogating nature and then formulating a testable theory to explain the observed phenomena. One ought to interrogate human thought, meaning frontier-line mathematics concerned with geometry and symmetry in order to find there the threads of so far unobserved correspondences, reinterpretations and renewed conceptions.
This monograph, unique in the literature, is the first to develop a mathematical theory of gravitational lensing. The theory applies to any finite number of deflector planes and highlights the distinctions between single and multiple plane lensing. Introductory material in Parts I and II present historical highlights and the astrophysical aspects of the subject. Among the lensing topics discussed are multiple quasars, giant luminous arcs, Einstein rings, the detection of dark matter and planets with lensing, time delays and the age of the universe (Hubble's constant), microlensing of stars and quasars. The main part of the book---Part III---employs the ideas and results of singularity theory to put gravitational lensing on a rigorous mathematical foundation and solve certain key lensing problems. Results are published here for the first time. Mathematical topics discussed: Morse theory, Whitney singularity theory, Thom catastrophe theory, Mather stability theory, Arnold singularity theory, and the Euler characteristic via projectivized rotation numbers. These tools are applied to the study of stable lens systems, local and global geometry of caustics, caustic metamorphoses, multiple lensed images, lensed image magnification, magnification cross sections, and lensing by singular and nonsingular deflectors. Examples, illustrations, bibliography and index make this a suitable text for an undergraduate/graduate course, seminar, or independent thesis project on gravitational lensing. The book is also an excellent reference text for professional mathematicians, mathematical physicists, astrophysicists, and physicists.
Based on class-tested notes, this text offers an introduction to Conformal Field Theory with a special emphasis on computational techniques of relevance for String Theory. It introduces Conformal Field Theory at a basic level, Kac-Moody algebras, one-loop partition functions, Superconformal Field Theories, Gepner Models and Boundary Conformal Field Theory. Eventually, the concept of orientifold constructions is explained in detail for the example of the bosonic string. In providing many detailed CFT calculations, this book is ideal for students and scientists intending to become acquainted with CFT techniques relevant for string theory but also for students and non-specialists from related fields.
Based on a series of university lectures on nonrelativistic quantum mechanics, this textbook covers a wide range of topics, from the birth of quantum mechanics to the fine-structure levels of heavy atoms. The author sets out from the crisis in classical physics and explores the seminal ideas of Einstein, Bohr, and de Broglie and their vital importance for the development of quantum mechanics. There follows a bottom-up presentation of the postulates of quantum mechanics through real experiments (such as those of neutron interferometry), with consideration of their most important consequences, including applications in the field of atomic physics. A final chapter is devoted to the paradoxes of quantum mechanics, and particularly those aspects that are still open and hotly debated, to end up with a mention to Bell's theorem and Aspect's experiments. In presenting the principles of quantum mechanics in an inductive way, this book has already proved very popular with students in its Italian language version.It complements the exercises and solutions book "Problems in Quantum Mechanics", by E. d'Emilio, L.E. Picasso (Springer).
The first part of this thesis presents the measurement of the inclusive cross-section for electron production from heavy-flavour decays in the electron transverse momentum range 7 GeV < pT < 26 GeV using 1.3 pb 1 of 7 TeV proton-proton collision data collected by the ATLAS experiment at the Large Hadron Collider in 2010. The measured value of the cross-section within the fiducial range of the analysis is _e^HF = 0.946 +/- 0.020(stat.) +/- 0.146(syst.) +/- 0.032(lumi.) b. Theoretical predictions are in good agreement with the measurement. The second part of this thesis is a search for compressed supersymmetric scenarios in events with missing transverse energy, jets and one isolated low-pT lepton in the final state using 4.7 fb-1 of ATLAS data collected at 7 TeV center-of-mass energy in 2011. No significant excess of events over the Standard Model expectation is observed and exclusion limits are derived for a number of supersymmetric models.
This book highlights the review of articles in theoretical physics by the students of Professor K. Babu Joseph, as a Festschrift for his 80th Birthday. This book is divided into four sections based on the contributions of Babu Joseph and his students. The four sections are Cosmology, High Energy Physics, Mathematical Physics and Non-linear Dynamics and its applications.
The material collected in this book originated from the author's twenty-five years of teaching for a two-semester, first year graduate course in the University of Michigan. It discusses the physics and analysis of nuclear and electromagnetic interactions. It also introduces the concepts of Quantum Mechanics from the Liouville, rather than the Schroedinger, point of view. This viewpoint is unique, less abstract and lends itself nicely to physical applications. It is highly recommended as a text for graduate courses in Physics, Chemistry and Engineering.
The material collected in this book originated from the author's twenty-five years of teaching for a two-semester, first year graduate course in the University of Michigan. It discusses the physics and analysis of nuclear and electromagnetic interactions. It also introduces the concepts of Quantum Mechanics from the Liouville, rather than the Schroedinger, point of view. This viewpoint is unique, less abstract and lends itself nicely to physical applications. It is highly recommended as a text for graduate courses in Physics, Chemistry and Engineering.
It has been said that String theorists talk to string theorists and everyone else wonders what they are saying'. This book will be a great help to those researchers who are challenged by modern quantum field theory. Quantum field theory experienced a renaissance in the late 1960s. Here, participants in the Les Houches sessions of 1970/75, now key players in quantum field theory and its many impacts, assess developments in their field of interest and provide guidance to young researchers challenged by these developments, but overwhelmed by their complexities. The book is not a textbook on string theory, rather it is a complement to Polchinski's book on string theory. It is a survey of current problems which have their origin in quantum field theory.
Waves represent a classic topic of study in physics, mathematics, and engineering. Many modern technologies are based on our understanding of waves and their interaction with matter. In the past thirty years there have been some revolutionary developments in the study of waves. The present volume is the only available source which details these developments in a systematic manner, with the aim of reaching a broad audience of non-experts. It is an important resource book for those interested in understanding the physics underlying nanotechnology and mesoscopic phenomena, as well as for bridging the gap between the textbooks and research frontiers in any wave related topic. A special feature of this volume is the treatment of classical and quantum mechanical waves within a unified framework, thus facilitating an understanding of similarities and differences between the two.
Theoretical physicists allover the world are acquainted with Lande's celebrated computation of the g factor or splitting factor or, more precisely, the magne togyric factor. The so-called anomalous Zeeman effect had intrigued, if not vexed, some of the most distinguished physicists of that time, such as Bohr, Sommerfeld, Pauli, and others. Lande realized that this recalcitrant effect was inseparable from the multiplet line structure - a breakthrough in understanding which he achieved in 1922 at the age of thirty four. It was in the same year that Lande discovered the interval rule for the separation of multiplet sublevels, a significant result that holds in all cases of Russell-Saunders coupling and renders comparatively easy the empirical analysis of spectral multiplets. In the twenties, Lande succeeded in constructing some original concepts of axiomatic thermodynamics by employing Caratheodory's somewhat esoteric approach as his guiding concept. Published in the Handbuch der Physik, his comprehensive treatise, evincing several novel ideas, has become a classic. Lande, Sommerfeld's student though never a true disciple, published two monographs on quantum mechanics that are remarkable for their content and exposition. In this connection it may be apposite to stress that Lande had sub scribed for many years to the (infelicitously named) Copenhagen interpretation."
Advances in Quantum Chemistry publishes articles and invited reviews by leading international researchers in quantum chemistry. Quantum chemistry deals particularly with the electronic structure of atoms, molecules, and crystalline matter and describes it in terms of electron wave patterns. It uses physical and chemical insight, sophisticated mathematics and high-speed computers to solve the wave equations and achieve its results. Advances highlights these important, interdisciplinary developments.
Quantum theory is one of the most fascinating and successful constructs in the intellectual history of mankind. Nonetheless, the theory has very shaky philosophical foundations. This book contains thoughtful discussions by eminent researchers of a spate of experimental techniques newly developed to test some of the stranger predictions of quantum physics. The advances considered include recent experiments in quantum optics, electron and ion interferometry, photon down conversion in nonlinear crystals, single trapped ions interacting with laser beams, atom-field coupling in micromaser cavities, quantum computation, quantum cryptography, decoherence and macroscopic quantum effects, the quantum state diffusion model, quantum gravity, the quantum mechanics of cosmology and quantum non-locality along with the continuing debate surrounding the interpretation of quantum mechanics. Audience: The book is intended for physicists, philosophers of science, mathematicians, graduate students and those interested in the foundations of quantum theory.
This thesis casts new light on quantum entanglement of photons with complex spatial patterns due to direct coincidence imaging. It demonstrates novel methods to generate, investigate, and verify entanglement of complex spatial structures. Quantum theory is one of the most successful and astonishing physical theories. It made possible various technical devices like lasers or mobile phones and, at the same time, it completely changed our understanding of the world. Interestingly, such counterintuitive features like entanglement are an important building block for future quantum technologies. In photonic experiments, the transverse spatial degree of freedom offers great potential to explore fascinating phenomena of single photons and quantum entanglement. It was possible to verify the entanglement of two photons with very high quanta of orbital angular momentum, a property of photons connected to their spatial structure and theoretically unbounded. In addition, modern imaging technology was used to visualize the effect of entanglement even in real-time and to show a surprising property: photons with complex spatial patterns can be both entangled and not entangled in polarization depending on their transverse spatial position.
As miniaturisation deepens, and nanotechnology and its machines become more prevalent in the real world, the need to consider using quantum mechanical concepts to perform various tasks in computation increases. Such tasks include: the teleporting of information, breaking heretofore "unbreakable" codes, communicating with messages that betray eavesdropping, and the generation of random numbers. This is the first book to apply quantum physics to the basic operations of a computer, representing the ideal vehicle for explaining the complexities of quantum mechanics to students, researchers and computer engineers, alike, as they prepare to design and create the computing and information delivery systems for the future. Both authors have solid backgrounds in the subject matter at the theoretical and more practical level. While serving as a text for senior/grad level students in computer science/physics/engineering, this book has its primary use as an up-to-date reference work in the emerging interdisciplinary field of quantum computing - the only prerequisite being knowledge of calculus and familiarity with the concept of the Turing machine.
Faithful communication is a necessary precondition for large-scale quantum information processing and networking, irrespective of the physical platform. Thus, the problems of quantum-state transfer and quantum-network engineering have attracted enormous interest over the last years, and constitute one of the most active areas of research in quantum information processing. The present volume introduces the reader to fundamental concepts and various aspects of this exciting research area, including links to other related areas and problems. The implementation of state-transfer schemes and the engineering of quantum networks are discussed in the framework of various quantum optical and condensed matter systems, emphasizing the interdisciplinary character of the research area. Each chapter is a review of theoretical or experimental achievements on a particular topic, written by leading scientists in the field. The volume aims at both newcomers as well as experienced researchers.
This is the first thorough examination of weakly nonlocal solitary waves, which are just as important in applications as their classical counterparts. The book describes a class of waves that radiate away from the core of the disturbance but are nevertheless very long-lived nonlinear disturbances.
This volume is an outgrowth of the Second International Workshop on Macroscopic Quantum Coherence and Computing held in Napoli, Italy, in June 2000. This workshop gathered a number of experts from the major Universities and Research Institutions of several countries. The choice of the location, which recognizes the role and the traditions of Naples in this field, guaranteed the participants a stimulating atmosphere. The aim of the workshop has been to report on the recent theoretical and experimental results on the macroscopic quantum coherence of macroscopic systems. Particular attention was devoted to Josephson devices. The correlation with other atomic and molecular systems, exhibiting a macroscopic quantum behaviour, was also discussed. The seminars provided both historical overview and recent theoretical ground on the topic, as well as information on new experimental results relative to the quantum computing area. The first workshop on this topic, held in Napoli in 1998, has been ennobled by important reports on observations of Macroscopic Quantum Coherence in mesoscopic systems. The current workshop proposed, among many stimulating results, the first observations of Macroscopic Quantum Coherence between macroscopically distinct fluxoid states in rf SQUIDs, 20 years after the Leggett's proposal to experimentally test the quantum behavior of macroscopic systems. Reports on observations of quantum behaviour in molecular and magnetic systems, small Josephson devices, quantum dots have also been particularly stimulating in view of the realization of several possible q-bits.
* Which problems do arise within relativistic enhancements of the Schrodinger theory, especially if one adheres to the usual one-particle interpretation? * To what extent can these problems be overcome? * What is the physical necessity of quantum field theories? In many textbooks, only insufficient answers to these fundamental questions are provided by treating the relativistic quantum mechanical one-particle concept very superficially and instead introducing field quantization as soon as possible. By contrast, this book emphasizes particularly this point of view (relativistic quantum mechanics in the ''narrow sense''): it extensively discusses the relativistic one-particle view and reveals its problems and limitations, therefore illustrating the necessity of quantized fields in a physically comprehensible way. The first two chapters contain a detailed presentation and comparison of the Klein-Gordon and Dirac theory, always with a view to the non-relativistic theory. In the third chapter, we consider relativistic scattering processes and develop the Feynman rules from propagator techniques. This is where the indispensability of quantum field theory reasoning becomes apparent and basic quantum field theory concepts are introduced. This textbook addresses undergraduate and graduate Physics students who are interested in a clearly arranged and structured presentation of relativistic quantum mechanics in the "narrow sense" and its connection to quantum field theories. Each section contains a short summary and exercises with solutions. A mathematical appendix rounds out this excellent textbook on relativistic quantum mechanics."
|
You may like...
Relativity - The Special and The General…
Albert Einstein
Hardcover
Research Anthology on Advancements in…
Information Resources Management Association
Hardcover
R11,201
Discovery Miles 112 010
Symmetry in Quantum Theory of Gravity
Chris Fields, Antonino Marciano
Hardcover
R1,139
Discovery Miles 11 390
Quantum Physics And Modern Applications…
Seng Ghee Tan, Ching Hua Lee, …
Paperback
R1,062
Discovery Miles 10 620
|