![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Quantum physics (quantum mechanics)
This book tackles quantum gravity via the so-called background field method and its effective action functional. The author presents an explicitly covariant and effective technique to calculate the de Witt coefficients and to analyze the Schwinger-de Wit asymptotic expansion of the effective action. He also investigates the ultraviolet behaviour of higher-derivative quantum gravity.The book addresses theoretical physicists, graduate students as well as researchers, but should also be of interest to physicists working in mathematical or elementary particle physics.
Solitary wave physics plays a significant role from modern optical physics to optical communication, optical switching and optical storage. This book gives an updated overview of optical solitons, as a reference and guide for advanced students and scientists working in the field.
Each of this book's 32 essays discusses a chosen topic, at a level that is generally within that of a four-year degree course in Physics. The essays supplement (indeed sometimes correct) treatments usually given, or supplies reasoning that tends to fall through the cracks. The author uses his life long experience of tutorial teaching at Oxford to know what topics often need such discussion, for clarification, or for avoidance of common confusions. The book contains accounts of even-standard topics, accounts that offer an unusual emphasis, or a fresh insight, or more than customary rigour, or a cross-link to apparently unrelated material. The student (and their teachers) who really wants to understand physics will find this book indispensable. Often the outcome of tutorial discussion has been an understanding that lies a little to the side of what is presented in standard texts. Such understanding is presented here in the essays. The topics covered are diverse and have something useful to say across most areas of a physics degree.
Beautifully illustrated and engagingly written, Twelve Lectures in Quantum Mechanics presents theoretical physics with a breathtaking array of examples and anecdotes. Basdevant's style is clear and stimulating, in the manner of a brisk classroom lecture that students can follow with ease and enjoyment. Here is a sample of the book's style, from the opening of Chapter 1: If one were to ask a passer-by to quote a great formula of physics, chances are that the answer would be E = mc2. In fact, of the three watershed years for physics toward the beginning of the 20th century - 1905: the Special Relativity of Einstein, Lorentz and Poincare; 1915: the General Relativity of Einstein, with its extraordinary reflections on gravitation, space and time; and 1925: the development of Quantum Mechanics; it is surely the last which has the most profound implications for the development of science and technology. There is no way around it: all physics is quantum, from elementary particles, to stellar physics and the Big Bang, not to mention semiconductors and solar cells. and Chair of the Department of Physics at the Ecole Polytechnique, and Director of Research for the CNRS. Specializing in the theoretical physics of elementary particles, quantum field theory and astrophysics, Prof. Basdevant works in the Leprince-Ringuet Laboratory at the Ecole Polytechnique.
At the outset of the research leading to this book I held a position somewhere close to 'the standard Copenhagen interpretation' of QM. I was strongly attracted to, in particular, the philosophy of Niels Bohr. However, being aware of some of the problematic sides and ambiguities of his views and of new developments which have taken place in QM after his time, the main challenge would be to develop a more up to date version version of his approach and express it in a philosophically unobjectionable way. Traces of this original attitude can still be found in views I hold nowadays. For instance, I think that I now know a satisfactory and correct way of dealing with features like 'complementarity', and I still see this as a relevant subject. In many other respects, however, there have been major changes in my position. In fact, during certain stages of my research my views simply started moving and kept on doing so at an irritating pace and for uncomfortably long periods of time. I learned, for example that at least some of the classical ideas about theory structure are much better than I had realized, and cannot just be pushed aside for anything even as impressive as empirical success.
Exploring various transport-simulation methods and applications for properties of nanometer-scale systems, this account illustrates how quantum mechanics have become an increasingly important field of scientific research. Beginning with a short review of quantum transport, followed by various calculation methods for nanosystems based on scattering approaches, non-equilibrium Green's function, master equation, and time-dependent wave-packet diffusion, this report broaches all aspects of nanosystems, from the fundamental to more advanced topics. With numerous examples that describe quantum transport calculations, this is an essential resource for promoting an easier understanding for graduate students and researchers of the field.
4. 2 Variance of Quantum Matrix Elements. 125 4. 3 Berry's Trick and the Hyperbolic Case 126 4. 4 Nonhyperbolic Case . . . . . . . 128 4. 5 Random Matrix Theory . . . . . 128 4. 6 Baker's Map and Other Systems 129 4. 7 Appendix: Baker's Map . . . . . 129 5 Error Terms 133 5. 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . 133 5. 2 The Riemann Zeta Function in Periodic Orbit Theory 135 5. 3 Form Factor for Primes . . . . . . . . . . . . . . . . . 137 5. 4 Error Terms in Periodic Orbit Theory: Co-compact Case. 138 5. 5 Binary Quadratic Forms as a Model . . . . . . . . . . . . 139 6 Co-Finite Model for Quantum Chaology 141 6. 1 Introduction. . . . . . . . 141 6. 2 Co-finite Models . . . . . 141 6. 3 Geodesic Triangle Spaces 144 6. 4 L-Functions. . . . . . . . 145 6. 5 Zelditch's Prime Geodesic Theorem. 146 6. 6 Zelditch's Pseudo Differential Operators 147 6. 7 Weyl's Law Generalized 148 6. 8 Equidistribution Theory . . . . . . . . . 150 7 Landau Levels and L-Functions 153 7. 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . 153 7. 2 Landau Model: Mechanics on the Plane and Sphere. 153 7. 3 Landau Model: Mechanics on the Half-Plane 155 7. 4 Selberg's Spectral Theorem . . . . . . . . . . . 157 7. 5 Pseudo Billiards . . . . . . . . . . . . . . . . . 158 7. 6 Landau Levels on a Compact Riemann Surface 159 7. 7 Automorphic Forms . . . . . 160 7. 8 Maass-Selberg Trace Formula 162 7. 9 Degeneracy by Selberg. . . . 163 7. 10 Hecke Operators . . . . . . . 163 7. 11 Selberg Trace Formula for Hecke Operators 167 7. 12 Eigenvalue Statistics on X . . . . 169 7. 13 Mesoscopic Devices. . . . . . . . 170 7. 14 Hall Conductance on Leaky Tori 170 7.
As the growing number of conference proceedings, preprints, periodicals and popular journal articles are being joined by various electronic forms of dissemination of research, the series Progress in Low Temperature Physics assumes a particular responsibility in providing excellent reviews, guiding the reading of the literature and providing direction for future research possibilities. In this most recent volume, the main theme is research on superfluid and adsorbed phases of helium. In five chapters the following topics are dealt with. Chapter one is a review of one of the essential characteristics of superfluid 4He, the Landau critical velocity. Chapter two reviews the amazing properties of coherent spin dynamics in superfluid 3He. The next chapter examines a unique situation with a number of thermodynamic transitions between superfluid states and discusses the current experimental and theoretical situation. Properties of phases of 3He adsorbed on graphite are discussed in the following chapter, and in a complementary final chapter a review is presented on the properties of multilayer 3He-4He mixture films.
This thesis reports on the final measurement of the flavor-mixing phase in decays of strange-bottom mesons (B_s) into J/psi and phi mesons performed in high-energy proton-antiproton collisions recorded by the Collider Experiment at Fermilab. Interference occurs between direct decays and decays following virtual particle-antiparticle transitions (B_s-antiB_s). The phase difference between transition amplitudes ("mixing phase") is observable and extremely sensitive to contributions from non-standard-model particles or interactions that may be very hard to detect otherwise - a fact that makes the precise measurement of the B_s mixing phase one of the most important goals of particle physics. The results presented include a precise determination of the mixing phase and a suite of other important supplementary results. All measurements are among the most precise available from a single experiment and provide significantly improved constraints on the phenomenology of new particles and interactions.
This volume presents a selection of 434 letters from and to the Dutch physicist and Nobel Prize winner Hendrik Antoon Lorentz (1853-1928), covering the period from 1883 until a few months before his death in February 1928. The sheer size of the available correspondence (approximately 6000 letters from and to Lorentz) preclude a full publication. The letters included in this volume have been selected according to various criteria, the most important of which is scientific importance. A second criterion has been the availability of letters both from and to Lorentz, so that the reader can follow the exchange between Lorentz and his correspondent. Within such correspondences a few unimportant items, dealing with routine administrative or organizational matters, have been omitted. An exception to the scientific criterion is the exchange of letters between Lorentz and Albert Einstein, Max Planck, Woldemar Voigt, and Wilhelm Wien during World War I: these letters have been included because they shed important light on the disruption of the scientific relations during the war and on the political views of these correspondents as well as of Lorentz. similar reasons the letters exchanged with Einstein and Planck on post-war political issues have been included. Biographical sketch Hendrik Antoon Lorentz was born on July 18, 1853 in the Dutch town of Arnhem. He was the son of a relatively well-to-do owner of a nursery.
Practical quantum computing still seems more than a decade away, and researchers have not even identified what the best physical implementation of a quantum bit will be. There is a real need in the scientific literature for a dialogue on the topic of lessons learned and looming roadblocks. This reprint from Quantum Information Processing is dedicated to the experimental aspects of quantum computing and includes articles that 1) highlight the lessons learned over the last 10 years, and 2) outline the challenges over the next 10 years. The special issue includes a series of invited articles that discuss the most promising physical implementations of quantum computing. The invited articles were to draw grand conclusions about the past and speculate about the future, not just report results from the present.
This volume reviews recent developments in conformal quantum field theory in D-dimensions, and focuses on two main aims. Firstly, the promising trend is followed toward constructing an exact solution for a certain class of models. Work on the conformal Ward identities in a D-dimensional space in the late '70s suggests a parallel with the null-vectors which determine the minimal models in the two-dimensional field theory. Recent research has also indicated the possible existence of an infinite parameter algebra analogous to the Virasoro algebra in spaces of higher dimensions D>=3. Each of these models contains parameters similar to the central charge of the two-dimensional theory, due to special fields which occur in the commutator of the components of the energy-momentum tensor. As a first step, a special formalism is suggested which allows finding an exact solution of these models for any space dimension. Then it is shown that in each model closed differential equations can be obtained for higher correlators, as well as the algebraic equations for scale dimensions of fields, and dimensionless parameters similar to the central charge. Secondly, this work aims to give a survey of some special aspects of conformal quantum field theory in D-dimensional space. Included are the survey of conformal methods of approximate calculation of critical indices in a three-dimensional space, an analysis and solution of a renormalised system of Schwinger-Dyson equations, a derivation of partial wave expansions, among other topics. Special attention is given to the development of the apparatus of quantum conform theory of gauge fields. Audience: This book will be of interest to graduate students andresearchers whose work involves quantum field theory.
Quantum and chaos, key concepts in contemporary science, are incompatible by nature. This volume presents an investigation into quantum transport in mesoscopic or nanoscale systems which are classically chaotic and shows the success and failure of quantal, semiclassical, and random matrix theories in dealing with questions emerging from the mesoscopic cosmos. These traditional theories are critically analysed, and this leads to a new direction. To reconcile quantum with chaos and to restore genuine temporal chaos in quantum systems, a time-discrete variant of quantum dynamics is proposed. Audience: This book will be of interest to graduate students and researchers in physics, chemistry and mathematics, whose work involves fundamental questions of quantum mechanics in chaotic systems.
This book is unique in covering phenomena in photon- matter interactions in a unified way over a range of many orders in energy. The quantum field theoretic approach to the fully relativistic theory of quantum electrodynamics (QED) is presented together with the non- relativistic theory in both confined and unconfined geometries. The predictions of QED have been verified to a greater accuracy than any other physical theory. Moreover QED is a paradigm for other gauge theories and is presented in such a way that the generalisation to other gauge theories is natural. Gauge and Poincare symmetry properties and the non-existence of a photon wave function are thoroughly discussed. Starting from the Dirac equation the non-relativistic interaction of the electron with the electromagnetic field is derived as an effective Hamiltonian of multipole expansions. Much of quantum optics is based on the lowest order dipole approximation. From this point on the treatment of fully relativistic QED and quantum optics is done in parallel. Applications of perturbation theory such as Compton and Moller scattering and the theory photdetection are given. After the impressive successes of QED, the limitation of the theory and the necessity of electroweak theory and quantumchromodynamics are discussed. The remaining chapters are devoted to quantum optics inside cavaties. Various approaches to open systems such as master equations are discussed within the context of active systems (e.g. the laser) and passive systems. Semi- classical approximarions are shown to imply a rich non- linear dynamics including chaos for certain parameter regimes. The effect of fluctuations on such non-linear dynamics is also studied. The final chapter is devoted to highly non- classical states of the light field such as photon number, squeezed and two photon entangled states. The latter are studied for the important system of parametric down conversion and the localisation properties of photons are characterised in terms of asympotic tails in photodetection probabilities as a function of time delay. The range of the book has wider benefits. Workers in quantum optics will gain a deeper understanding of the foundations of their subject and field theorists will see concrete examples of open systems, which are beginning to impinge on fundamental theories.
Today, quantum information theory is among the most exciting scientific frontiers, attracting billions of dollars in funding and thousands of talented researchers. But as MIT physicist and historian David Kaiser reveals, this cutting-edge field has a surprisingly psychedelic past. How the Hippies Saved Physics introduces us to a band of freewheeling physicists who defied the imperative to "shut up and calculate" and helped to rejuvenate modern physics. For physicists, the 1970s were a time of stagnation. Jobs became scarce, and conformity was encouraged, sometimes stifling exploration of the mysteries of the physical world. Dissatisfied, underemployed, and eternally curious, an eccentric group of physicists in Berkeley, California, banded together to throw off the constraints of the physics mainstream and explore the wilder side of science. Dubbing themselves the "Fundamental Fysiks Group," they pursued an audacious, speculative approach to physics. They studied quantum entanglement and Bell's Theorem through the lens of Eastern mysticism and psychic mind-reading, discussing the latest research while lounging in hot tubs. Some even dabbled with LSD to enhance their creativity. Unlikely as it may seem, these iconoclasts spun modern physics in a new direction, forcing mainstream physicists to pay attention to the strange but exciting underpinnings of quantum theory. A lively, entertaining story that illuminates the relationship between creativity and scientific progress, How the Hippies Saved Physics takes us to a time when only the unlikeliest heroes could break the science world out of its rut.
"Medical scientists use the word `iatrogenic' to refer to disabilities that are the consequence of medical treatment. We believe that some such word might be coined to refer to philosophical difficulties for which philosophers themselves are responsible" Sir Peter Medawar Arguing that quantum theory as it stands is perhaps the most comprehensive, well-verified, and successful theory in the history of science, the author clears away the impression that it is an incomplete, philosophically flawed, and self-contradictory theory. In simple terms accessible to anyone with a little prior knowledge of science, Wallace examines the numerous "paradoxes" and "difficulties" claimed for quantum mechanics, and shows that they are due to excesses of interpretation that have been imposed on the theory.
This monograph identifies the essential characteristics of the objects described by current quantum theory and considers their relationship to space-time. In the process, it explicates the senses in which quantum objects may be consistently considered to have parts of which they may be composed or into which they may be decomposed. The book also demonstrates the degree to which reduction is possible in quantum mechanics, showing it to be related to the objective indefiniteness of quantum properties and the strong non-local correlations that can occur between the physical quantities of quantum subsystems. Careful attention is paid to the relationships among such property correlations, physical causation, probability, and symmetry in quantum theory. In this way, the text identifies and clarifies the conceptual grounds underlying the unique nature of many quantum phenomena.
At what level of physical existence does "quantum behavior" begin? How does it develop from classical mechanics? This book addresses these questions and thereby sheds light on fundamental conceptual problems of quantum mechanics. It elucidates the problem of quantum-classical correspondence by developing a procedure for quantizing stochastic systems (e.g. Brownian systems) described by Fokker-Planck equations. The logical consistency of the scheme is then verified by taking the classical limit of the equations of motion and corresponding physical quantities. Perhaps equally important, conceptual problems concerning the relationship between classical and quantum physics are identified and discussed. Graduate students and physical scientists will find this an accessible entree to an intriguing and thorny issue at the core of modern physics.
"CP" violation is a well-established phenomenon in particle physics, but until 2001 it was only observed in kaons. In the last decade, several matter-antimatter asymmetries have been observed in neutral B mesons in line with the expectations of the Standard Model of the weak interaction. Direct "CP" violation is also expected in the decay rates of charged "B+ "mesons versus that of "B-" mesons, though the greatest effects are present in a decay that occurs just twice in 10 million decays. Such rarity requires huge samples to study and this is exactly what the LHC, and its dedicated "B-"physics experiment LHCb provide.This thesispresents ananalysis of the first two years of LHCb data.The authordescribes the first observation of the rare decay, "B- DK-, D -K+ "and the first observation of direct "CP" violation in this "B" decay. The workconstitutes essential information on the experiment s measurement of a fundamental parameter of the theory and stands as a benchmark against which subsequent analyses of this type will be compared."
This book is based upon the lectures delivered from 18 to 22 June 2007 at the INFN-LaboratoriNazionali di Frascati School on Attractor Mechanism, directed by Stefano Bellucci, with the participation of prestigious lecturers, including S. Ferrara, M. Gnaydin, P. Levay, T. Mohaupt, and A. Zichichi. All lectures were given at a pedagogical, introductory level, a feature which is re?ected in the s- ci?c "?avor" of this volume, which has also bene?ted much from the extensive discussions and related reworking of the various contributions. This is the fourth volume in a series of books on the general topics of sup- symmetry, supergravity, black holes, and the attractor mechanism. Indeed, based on previous meetings, three volumes have already been published: BELLUCCI S. (2006). Supersymmetric Mechanics - Vol. 1: Supersymmetry, NoncommutativityandMatrixModels.(vol.698, pp.1-229).ISBN:3-540-33313-4. Berlin, Heidelberg: Springer Verlag (Germany). Springer Lecture Notes in Physics Vol. 698. BELLUCCIS., S.FERRARA, A.MARRANI.(2006).SupersymmetricMech- ics - Vol. 2: The Attractor Mechanism and Space Time Singularities. (vol. 701, pp. 1-242). ISBN-13: 9783540341567. Berlin, Heidelberg: Springer Verlag (G- many). Springer Lecture Notes in Physics Vol. 701. BELLUCCIS.(2008).SupersymmetricMechanics-Vol.3: AttractorsandBlack HolesinSupersymmetricGravity.(vol.755, pp.1-373).ISBN-13:9783540795223. Berlin, Heidelberg: Springer Verlag (Germany). Springer Lecture Notes in Physics 755. In this volume, we have included two contributions originating from short p- sentations of recent original results given by participants, i.e., Wei Li and Filipe Moura.
This book addresses several mathematical models from the most relevant class of kp-Schroedinger systems. Both mathematical models and state-of-the-art numerical methods for adequately solving the arising systems of differential equations are presented. The operational principle of modern semiconductor nano structures, such as quantum wells, quantum wires or quantum dots, relies on quantum mechanical effects. The goal of numerical simulations using quantum mechanical models in the development of semiconductor nano structures is threefold: First they are needed for a deeper understanding of experimental data and of the operational principle. Secondly, they allow us to predict and optimize in advance the qualitative and quantitative properties of new devices in order to minimize the number of prototypes needed. Semiconductor nano structures are embedded as an active region in semiconductor devices. Thirdly and finally, the results of quantum mechanical simulations of semiconductor nano structures can be used with upscaling methods to deliver parameters needed in semi-classical models for semiconductor devices, such as quantum well lasers. This book covers in detail all these three aspects using a variety of illustrative examples. Readers will gain detailed insights into the status of the multiband effective mass method for semiconductor nano structures. Both users of the kp method as well as advanced researchers who want to advance the kp method further will find helpful information on how to best work with this method and use it as a tool for characterizing the physical properties of semiconductor nano structures. The book is primarily intended for graduate and Ph.D. students in applied mathematics, mathematical physics and theoretical physics, as well as all those working in quantum mechanical research or the semiconductor / opto-electronic industry who are interested in new mathematical aspects.
Quantum Theory, together with the principles of special and general relativity, constitute a scientific revolution that has profoundly influenced the way in which we think about the universe and the fundamental forces that govern it. The Historical Development of Quantum Theory is a definitive historical study of that scientific work and the human struggles that accompanied it from the beginning. Drawing upon such materials as the resources of the Archives for the History of Quantum Physics, the Niels Bohr Archives, and the archives and scientific correspondence of the principal quantum physicists, as well as Jagdish Mehra's personal discussions over many years with most of the architects of quantum theory, the authors have written a rigorous scientific history of quantum theory in a deeply human context. This multivolume work presents a rich account of an intellectual triumph: a unique analysis of the creative scientific process. The Historical Development of Quantum Theory is science, history, and biography, all wrapped in the story of a great human enterprise. Its lessons will be an aid to those working in the sciences and humanities alike.
This thesis describes in detail the search for new phenomena in mono-jet final states with the ATLAS experiment at the LHC. The final state is considered the golden channel in the searches for large extra dimensions (LED) but also allows access to a very rich SUSY-related phenomenology pertaining to the production of weakly interacting massive particles (WIMPS), SUSY Dark Matter candidates, GMSB SUSY models with very light gravitino masses, as well as stop an sbottom pair production in compressed scenarios (with nearly degenerated squarks and the lightest neutralino), and also invisible Higgs searches, among others. Here, a number of these scenarios are explored. The measurements presented yield new powerful constraints on the existence of extra spatial dimensions, the pair production of WIMPs, and also provide the best limit to date on the gravitino mass.
"Fundamental Tests of Physics with Optically Trapped Microspheres
"details experiments on studying the Brownian motion of an
optically trapped microsphere with ultrahigh resolution and the
cooling of its motion towards the quantum ground state.
Bibliograpby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 Critical point dominance in quantum field models . . . . . . . . . . . . . . . . . . . . 326 lp, ' quantum fieId model in the single-phase regioni: Differentiability of the mass and bounds on critical exponents . . . . 341 Remark on the existence of lp: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 On the approach to the critical point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348 Critical exponents and elementary partic1es . . . . . . . . . . . . . . . . . . . . . . . . . . 362 V Particle Structure Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 The entropy principle for vertex funetions in quantum fieId models . . . . . 372 Three-partic1e structure of lp' interactions and the sealing limit . . . . . . . . . 397 Two and three body equations in quantum field models . . . . . . . . . . . . . . . 409 Partic1es and scaling for lattice fields and Ising models . . . . . . . . . . . . . . . . 437 The resununation of one particIe lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 VI Bounds on Coupling Constants Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479 Absolute bounds on vertices and couplings . . . . . . . . . . . . . . . . . . . . . . . . . . 480 The coupling constant in a lp' field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 491 VII Confinement and Instantons Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 Instantons in a U(I) lattice gauge theory: A coulomb dipole gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498 Charges, vortiees and confinement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516 vi VIII ReOectioD Positivity Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531 A note on reflection positivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532 vii Collected Papers - Volume 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 I Infinite Renormalization of the Hamiltonian Is Necessary 9 II Quantum Field Theory Models: Parti. The ep;" Model 13 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Fock space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Q space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 The Hamiltonian H(g). . . . . . . . . . . . . . . . . . . . . . |
You may like...
The Great Survival Book of Foraging Wild…
Small Footprint Press
Hardcover
R656
Discovery Miles 6 560
Respiratory Emergencies, An Issue of…
Robert Vissers, Michael A. Gibbs
Hardcover
R1,680
Discovery Miles 16 800
Contemporary Perspectives on Mathematics…
Olivia N. Saracho, Bernard Spodek
Hardcover
R2,826
Discovery Miles 28 260
The Legend Of Zola Mahobe - And The…
Don Lepati, Nikolaos Kirkinis
Paperback
(1)R480 Discovery Miles 4 800
|