![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Quantum physics (quantum mechanics)
"Quantum Gravitation" approaches the subject from the point of view of Feynman path integrals, which provide a manifestly covariant approach in which fundamental quantum aspects of the theory such as radiative corrections and the renormalization group can be systematically and consistently addressed. It is shown that the path integral method is suitable for both perturbative as well as non-perturbative studies, and is already known to offer a framework for the theoretical investigation of non-Abelian gauge theories, the basis for three of the four known fundamental forces in nature. The book thus provides a coherent outline of the present status of the theory gravity based on Feynman s formulation, with an emphasis on quantitative results. Topics are organized in such a way that the correspondence to similar methods and results in modern gauge theories becomes apparent. Covariant perturbation theory are developed using the full machinery of Feynman rules, gauge fixing, background methods and ghosts. The renormalization group for gravity and the existence of non-trivial ultraviolet fixed points are investigated, stressing a close correspondence with well understood statistical field theory models. The final chapter addresses contemporary issues in quantum cosmology such as scale dependent gravitational constants and quantum effects in the early universe."
This book presents the Proceedings of the 15th International Conference on Non-Hermitian Hamiltonians in Quantum Physics, held in Palermo, Italy, from 18 to 23 May 2015. Non-Hermitian operators, and non-Hermitian Hamiltonians in particular, have recently received considerable attention from both the mathematics and physics communities. There has been a growing interest in non-Hermitian Hamiltonians in quantum physics since the discovery that PT-symmetric Hamiltonians can have a real spectrum and thus a physical relevance. The main subjects considered in this book include: PT-symmetry in quantum physics, PT-optics, Spectral singularities and spectral techniques, Indefinite-metric theories, Open quantum systems, Krein space methods, and Biorthogonal systems and applications. The book also provides a summary of recent advances in pseudo-Hermitian Hamiltonians and PT-symmetric Hamiltonians, as well as their applications in quantum physics and in the theory of open quantum systems.
The study of quantum fluids, stimulated by the discovery of superfluidity in liquid helium, has experienced renewed interest after the observation of Bose-Einstein condensation (BEC) in ultra-cold atomic gases and the observation a new type of quantum fluid with specific characteristics derived from its intrinsic out-of-equilibrium nature. The main objective of this book is to take a snapshot of the state-of-the-art of this fast moving field with a special emphasis on the hot topics and new trends. Bringing together the most active specialists of the two areas (atomic and polaritonic quantum fluids), we expect that this book will facilitate the exchange and the collaboration between these two communities working on subjects with very strong analogies.
This monograph forms an interdisciplinary study in atomic, molecular, and quantum information (QI) science. Here a reader will find that applications of the tools developed in QI provide new physical insights into electron optics as well as properties of atoms & molecules which, in turn, are useful in studying QI both at fundamental and applied levels. In particular, this book investigates entanglement properties of flying electronic qubits generated in some of the well known processes capable of taking place in an atom or a molecule following the absorption of a photon. Here, one can generate Coulombic or fine-structure entanglement of electronic qubits. The properties of these entanglements differ not only from each other, but also from those when spin of an inner-shell photoelectron is entangled with the polarization of the subsequent fluorescence. Spins of an outer-shell electron and of a residual photoion can have free or bound entanglement in a laboratory.
This book is a treatise on time and on background independence in physics. It first considers how time is conceived of in each accepted paradigm of physics: Newtonian, special relativity, quantum mechanics (QM) and general relativity (GR). Substantial differences are moreover uncovered between what is meant by time in QM and in GR. These differences jointly source the Problem of Time: Nine interlinked facets which arise upon attempting concurrent treatment of the QM and GR paradigms, as is required in particular for a background independent theory of quantum gravity. A sizeable proportion of current quantum gravity programs - e.g. geometrodynamical and loop quantum gravity approaches to quantum GR, quantum cosmology, supergravity and M-theory - are background independent in this sense. This book's foundational topic is thus furthermore of practical relevance in the ongoing development of quantum gravity programs. This book shows moreover that eight of the nine facets of the Problem of Time already occur upon entertaining background independence in classical (rather than quantum) physics. By this development, and interpreting shape theory as modelling background independence, this book further establishes background independence as a field of study. Background independent mechanics, as well as minisuperspace (spatially homogeneous) models of GR and perturbations thereabout are used to illustrate these points. As hitherto formulated, the different facets of the Problem of Time greatly interfere with each others' attempted resolutions. This book explains how, none the less, a local resolution of the Problem of Time can be arrived at after various reconceptualizations of the facets and reformulations of their mathematical implementation. Self-contained appendices on mathematical methods for basic and foundational quantum gravity are included. Finally, this book outlines how supergravity is refreshingly different from GR as a realization of background independence, and what background independence entails at the topological level and beyond.
The aim of this book is to offer to the next generation of young researchers a broad and largely self-contained introduction to the physics of heavy ion collisions and the quark-gluon plasma, providing material beyond that normally found in the available textbooks. For each of the main aspects - QCD thermodynamics and global features of the QGP, collision hydrodynamics, electromagnetic probes, jet and quarkonium production, color glass condensate, and the gravity connection - the present volume provides extensive and pedagogical lectures, surveying the present status of both theory and experiment. A particular feature of this volume is that all lectures have been written with the active assistance of selected students present at the course in order to ensure the adequate level and coverage for the intended readership.
This thesis sheds new light on the worldwide first electrical manipulation of a single nuclear spin. Over the last four decades, the size of a bit, the smallest logical unit in a computer, has decreased by more than two orders of magnitude and will soon reach a limit where quantum phenomena become important. Inspired by the power of quantum mechanics, researchers have already identified pure quantum systems, having, analog to a classical bit, two controllable and readable states. In this regard, the inherent spin of electrons or nuclei with its two eigenstates, spin up and spin down, is a promising candidate. Using expertise in the field of single-molecule magnets, the author developed a molecular transistor, which allows quantum information to be written onto a single nuclear spin by means of an electric field only, and, in addition, enables the electronic read-out of this quantum state. This novel approach opens a path to addressing and manipulating individual nuclear spins within a very confined space (a single molecule), at high speed. Thus, the author was able to show that single molecule magnets are promising candidates for quantum information processing, which is triggering a new field of research towards molecular quantum electronics.
This book appears in the year of de Broglie's hundredth birthday (Mr. Wave-Particle Duality, himself). Each chapter is by a different author. Paper titles include: Probability, Pseudoprobability, Mean Values; Local Vacua; Duality of Fluctuations, Fields, and More; The Aharonov-Bohm Effect From the Point of View of Local Realism; Unsharp Particle-Wa
This book was inspired by the general observation that the great theories of modern physics are based on simple and transparent underlying mathematical structures - a fact not usually emphasized in standard physics textbooks - which makes it easy for mathematicians to understand their basic features. It is a textbook on quantum theory intended for advanced undergraduate or graduate students: mathematics students interested in modern physics, and physics students who are interested in the mathematical background of physics and are dissatisfied with the level of rigor in standard physics courses. More generally, it offers a valuable resource for all mathematicians interested in modern physics, and all physicists looking for a higher degree of mathematical precision with regard to the basic concepts in their field.
Classical Mechanics teaches readers how to solve physics problems; in other words, how to put math and physics together to obtain a numerical or algebraic result and then interpret these results physically. These skills are important and will be needed in more advanced science and engineering courses. However, more important than developing problem-solving skills and physical-interpretation skills, the main purpose of this multi-volume series is to survey the basic concepts of classical mechanics and to provide the reader with a solid understanding of the foundational content knowledge of classical mechanics. Classical Mechanics: The Universal Law of Gravitation focuses on the notion that forces act through their associated fields, which is first introduced when discussing Newton's universal law of gravitation. A huge conceptual leap is required from the reader: an object can cause another object to move without even touching it. This is a difficult concept to reconcile with our everyday experiences but it makes perfect sense when we realize that is exactly how the Earth acts on us. Gravity is able to pull on us even though we are not in direct contact with the Earth. Also, the concept of super-position (and when it is applicable) is introduced. Super-position is crucial to the development of problem-solving skills so it will be illustrated in a number of example problems.
This English version of Ruslan L. Stratonovich's Theory of Information (1975) builds on theory and provides methods, techniques, and concepts toward utilizing critical applications. Unifying theories of information, optimization, and statistical physics, the value of information theory has gained recognition in data science, machine learning, and artificial intelligence. With the emergence of a data-driven economy, progress in machine learning, artificial intelligence algorithms, and increased computational resources, the need for comprehending information is essential. This book is even more relevant today than when it was first published in 1975. It extends the classic work of R.L. Stratonovich, one of the original developers of the symmetrized version of stochastic calculus and filtering theory, to name just two topics. Each chapter begins with basic, fundamental ideas, supported by clear examples; the material then advances to great detail and depth. The reader is not required to be familiar with the more difficult and specific material. Rather, the treasure trove of examples of stochastic processes and problems makes this book accessible to a wide readership of researchers, postgraduates, and undergraduate students in mathematics, engineering, physics and computer science who are specializing in information theory, data analysis, or machine learning.
The aim of this book is to introduce mathematicians (and, in particular, graduate students) to the mathematical methods of theoretical and experimental quantum field theory, with an emphasis on coordinate-free presentations of the mathematical objects in play. This should in turn promote interaction between mathematicians and physicists by supplying a common and flexible language for the good of both communities, even if the mathematical one is the primary target. This reference work provides a coherent and complete mathematical toolbox for classical and quantum field theory, based on categorical and homotopical methods, representing an original contribution to the literature. The first part of the book introduces the mathematical methods needed to work with the physicists' spaces of fields, including parameterized and functional differential geometry, functional analysis, and the homotopical geometric theory of non-linear partial differential equations, with applications to general gauge theories. The second part presents a large family of examples of classical field theories, both from experimental and theoretical physics, while the third part provides an introduction to quantum field theory, presents various renormalization methods and discusses the quantization of factorization algebras. The book is primarily intended for pure mathematicians (and in particular graduate students) who would like to learn about the mathematics of quantum field theory.
This book discusses the study of double charm B decays and the first observation of B0->D0D0Kst0 decay using Run I data from the LHCb experiment. It also describes in detail the upgrade for the Run III of the LHCb tracking system and the trigger and tracking strategy for the LHCb upgrade, as well as the development and performance studies of a novel standalone tracking algorithm for the scintillating fibre tracker that will be used for the LHCb upgrade. This algorithm alone allows the LHCb upgrade physics program to achieve incredibly high sensitivity to decays containing long-lived particles as final states as well as to boost the physics capabilities for the reconstruction of low momentum particles.
Superstring theory is a promising theory which can potentially unify all the forces and the matters in particle physics. A new multi-dimensional object which is called "D-brane" was found. It drastically changed our perspective of a unified world. We may live on membrane-like hypersurfaces in higher dimensions ("braneworld scenario"), or we can create blackholes at particle accelarators, or the dynamics of quarks is shown to be equivalent to the higher dimensional gravity theory. All these scenarios are explained in this book with plain words but with little use of equations and with many figures. The book starts with a summary of long-standing problems in elementary particle physics and explains the D-branes and many applications of them. It ends with future roads for a unified ultimate theory of our world.
Cold atomic gases trapped and manipulated on atom chips allow the realization of seminal one-dimensional (1d) quantum many-body problems in an isolated and well controlled environment. In this context, this thesis presents an extensive experimental study of non-equilibrium dynamics in 1d Bose gases, with a focus on processes that go beyond simple dephasing dynamics. It reports on the observation of recurrences of coherence in the post-quench dynamics of a pair of 1d Bose gases and presents a detailed study of their decay. The latter represents the first observation of phonon-phonon scattering in these systems. Furthermore, the thesis investigates a novel cooling mechanism occurring in Bose gases subjected to a uniform loss of particles. Together, the results presented show a wide range of non-equilibrium phenomena occurring in 1d Bose gases and establish them as an ideal testbed for many-body physics beyond equilibrium.
This textbook extends from the basics of femtosecond physics all the way to some of the latest developments in the field. In this updated edition, the chapter on laser-driven atoms is augmented by the discussion of two-electron atoms interacting with strong and short laser pulses, as well as by a review of ATI rings and low energy structures in photo-electron spectra. In the chapter on laser-driven molecules a discussion of 2D infrared spectroscopy is incorporated. Theoretical investigations of atoms and molecules interacting with pulsed lasers up to atomic field strengths on the order of 10^16 W/cm(2) are leading to an understanding of many challenging experimental discoveries. The presentation starts with a brief introduction to pulsed laser physics. The basis for the non-perturbative treatment of laser-matter interaction in the book is the time-dependent Schroedinger equation. Its analytical as well as numerical solution are laid out in some detail. The light field is treated classically and different possible gauges for the field-matter interaction are discussed. Physical phenomena, ranging from paradigmatic Rabi-oscillations in two-level systems to the ionization of atoms, the generation of high-order harmonics, the ionization and dissociation of molecules, as well as the control of chemical reactions are presented and discussed on a fundamental level. In this way, the theoretical background for state of the art experiments with strong and short laser pulses is given. The new text is augmented by several additional exercises and now contains a total of forty-eight problems, whose worked-out solutions are given in the last chapter. In addition, some detailed calculations are performed in the appendices. Furthermore, each chapter ends with references to more specialized literature.
This book offers an introduction to ten key topics in quantum information science and quantum coherent phenomena, aimed at graduate-student level. The chapters cover some of the most recent developments in this dynamic research field where theoretical and experimental physics, combined with computer science, provide a fascinating arena for groundbreaking new concepts in information processing. The book addresses both the theoretical and experimental aspects of the subject, and clearly demonstrates how progress in experimental techniques has stimulated a great deal of theoretical effort and vice versa. Experiments are shifting from simply preparing and measuring quantum states to controlling and manipulating them, and the book outlines how the first real applications, notably quantum key distribution for secure communication, are starting to emerge. The chapters cover quantum retrodiction, ultracold quantum gases in optical lattices, optomechanics, quantum algorithms, quantum key distribution, quantum control based on measurement, orbital angular momentum of light, entanglement theory, trapped ions and quantum metrology, and open quantum systems subject to decoherence. The contributing authors have been chosen not just on the basis of their scientific expertise, but also because of their ability to offer pedagogical and well-written contributions which will be of interest to students and established researchers.
Consequences of quantum gravity on grander scales are expected to be enormous: only such a theory can show how black holes really behave and where our universe came from. Applications of loop quantum gravity to cosmology have especially by now shed much light on cosmic evolution of a universe in a fundamental, microscopic description. Modern techniques are explained in this book which demonstrate how the universe could have come from a non-singular phase before the big bang, how equations for the evolution of structure can be derived, but also what fundamental limitations remain to our knowledge of the universe before the big bang. The following topics will be covered in this book: Hamiltonian cosmology: a general basic treatment of isotropy,
perturbations and their role for observations; useful in general
cosmology. The book will start with physical motivations, rather than mathematical developments which is more common in other expositions of this field. All the required mathematical methods will be presented, but will not distract the reader from seeing the underlying physics. Simple but representative models will be presented first to show the basic features, which are then used to work upwards to a general description of quantum gravity and its applications in cosmology. This will make the book accessible to a more general physics readership.
This multidisciplinary book provides up-to-date coverage of carrier and spin dynamics and energy transfer and structural interaction among nanostructures. Coverage also includes current device applications such as quantum dot lasers and detectors, as well as future applications to quantum information processing. The book will serve as a reference for anyone working with or planning to work with quantum dots.
This doctoral thesis focuses on the search for new phenomena in top-antitop quark (tt) final states with additional b-quark jets at the LHC. It uses the full Run 1 dataset collected by the ATLAS experiment in proton-proton collisions at s=8 TeV. The final state of interest consists of an isolated lepton, a neutrino and at least six jets with at least four b-tagged jets, a challenging experimental signature owing to the large background from tt+heavy-flavor production. This final state is characteristic of ttH production, with the Higgs boson decaying into bb, a process that allows direct probing of the top-Higgs Yukawa coupling. This signature is also present in many extensions of the Standard Model that have been proposed as solutions to the hierarchy problem, such as supersymmetry or composite Higgs models, which predict the pair production of bosonic or fermionic top quark partners, or the anomalous production of four-top-quark events. All these physics processes have been searched for using an ambitious search strategy that has been developed on the basis of a combination of state-of-art theoretical predictions and a sophisticated statistical analysis to constrain in-situ the large background uncertainties. As a result, the most restrictive bounds to date on the above physics processes have been obtained. |
![]() ![]() You may like...
Feynman's Operational Calculus and…
Gerald W. Johnson, Michel L Lapidus, …
Hardcover
R3,836
Discovery Miles 38 360
Quantum Mechanics - A New Introduction
Kenichi Konishi, Giampiero Paffuti
Hardcover
R4,004
Discovery Miles 40 040
Excitons and Cooper Pairs - Two…
Monique Combescot, Shiue-Yuan Shiau
Hardcover
R3,139
Discovery Miles 31 390
|