0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (56)
  • R250 - R500 (316)
  • R500+ (4,687)
  • -
Status
Format
Author / Contributor
Publisher

Books > Science & Mathematics > Physics > Quantum physics (quantum mechanics)

Einstein's Photoemission - Emission from Heavily-Doped Quantized Structures (Hardcover, 2015 ed.): Kamakhya Prasad Ghatak Einstein's Photoemission - Emission from Heavily-Doped Quantized Structures (Hardcover, 2015 ed.)
Kamakhya Prasad Ghatak
R4,827 R3,732 Discovery Miles 37 320 Save R1,095 (23%) Ships in 12 - 17 working days

This monograph solely investigates the Einstein's Photoemission(EP) from Heavily Doped(HD) Quantized Structures on the basis of newly formulated electron dispersion laws. The materials considered are quantized structures of HD non-linear optical, III-V, II-VI, Ge, Te, Platinum Antimonide, stressed materials, GaP, Gallium Antimonide, II-V, Bismuth Telluride together with various types of HD superlattices and their Quantized counterparts respectively. The EP in HD opto-electronic materials and their nanostructures is studied in the presence of strong light waves and intense electric fields that control the studies of such quantum effect devices. The suggestions for the experimental determinations of different important physical quantities in HD 2D and 3D materials and the importance of measurement of band gap in HD optoelectronic materials under intense built-in electric field in nano devices and strong external photo excitation (for measuring physical properties in the presence of intense light waves which alter the electron energy spectra) have also been discussed in this context. The influence quantizing magnetic field, on the EP of the different HD quantized structures (quantum wells, quantum well HD superlattices and nipi structures) under different physical conditions has been investigated. This monograph contains 100 open research problems which form the integral part of the text and are useful for both Ph.D aspirants and researchers in the fields of materials science, condensed matter physics, solid-state sciences, nano-science and technology and allied fields in addition to the graduate courses in modern semiconductor nanostructures offered in different Universities and Institutes.

Third generation SUSY and t-t +Z production - Searches using the ATLAS detector at the CERN Large Hadron Collider (Hardcover,... Third generation SUSY and t-t +Z production - Searches using the ATLAS detector at the CERN Large Hadron Collider (Hardcover, 2014 ed.)
Josh McFayden
R3,358 Discovery Miles 33 580 Ships in 12 - 17 working days

This thesis describes searches for new particles predicted by the super symmetry (SUSY) theory, a theory extending beyond the current Standard Model of particle physics, using the ATLAS detector at the CERN Large Hadron Collider. The thesis focuses on searches for stop and sbottom squarks, the SUSY partners of the top and bottom quarks, which are expected to be lighter than the partners of the first and second generation quarks and therefore good candidates for the first evidence of SUSY. It describes novel techniques for estimating and rejecting the Standard-Model backgrounds to searches for these particles. It also includes an independent analysis seeking to constrain the Standard Model ttZ background process, which also represents the first ATLAS search for this rare process at the LHC. The stop squark analysis described, with substantial leading contributions from the author, is the first search for these particles at the LHC to use the jets plus missing transverse energy plus 0-lepton signature and provides the world's best limits on the stop mass for light neutralino LSPs. All in all, the thesis describes three different world-leading analyses in both Standard Model and SUSY physics and therefore represents a major contribution to the field.

Quantum Dynamics and Laser Control for Photochemistry (Hardcover, 1st ed. 2016): Matthieu Sala Quantum Dynamics and Laser Control for Photochemistry (Hardcover, 1st ed. 2016)
Matthieu Sala
R3,634 R3,367 Discovery Miles 33 670 Save R267 (7%) Ships in 12 - 17 working days

The central subject of this thesis is the theoretical description of ultrafast dynamical processes in molecular systems of chemical interest and their control by laser pulses. This work encompasses different cutting-edge methods in quantum chemistry, quantum dynamics and for the rigorous description of the interaction of light and matter at the molecular level. It provides a general quantum mechanical framework for the description of chemical processes guided by laser pulses, in particular near conical intersections, i.e. geometries where the nuclear and electronic motions couple and the molecule undergoes non-adiabatic (or non-Born-Oppenheimer) dynamics. In close collaboration with experimentalists, the author succeeds in making a decisive step to link and to apply quantum physics to chemistry by transferring state of the art techniques and concepts developed in physics to chemistry, such as "light dressed atoms and molecules" and "adiabatic Floquet theory". He applies these techniques in three prototypic model systems (aniline, pyrazine and NHD2) using high-level electronic structure calculations. Readers will enjoy the comprehensive and accessible introduction to the topic and methodology, as well as the clear structure of the thesis.

From Chemistry to Consciousness - The Legacy of Hans Primas (Hardcover, 1st ed. 2016): Harald Atmanspacher, Ulrich Muller-Herold From Chemistry to Consciousness - The Legacy of Hans Primas (Hardcover, 1st ed. 2016)
Harald Atmanspacher, Ulrich Muller-Herold
R1,525 Discovery Miles 15 250 Ships in 10 - 15 working days

This book reflects on the significant and highly original scientific contributions of Hans Primas. A professor of chemistry at ETH Zurich from 1962 to 1995, Primas continued his research activities until his death in 2014. Over these 50 years and more, he worked on the foundations of nuclear magnetic resonance spectroscopy, contributed to a number of significant issues in theoretical chemistry, helped to clarify central topics in quantum theory and the philosophy of physics, suggested innovative ways of addressing interlevel relations in the philosophy of science, and introduced cutting-edge approaches in the flourishing young field of scientific studies of consciousness. His work in these areas of research and its continuing impact is described by noted experts, colleagues, and collaborators of Primas. All authors contextualize their contributions to facilitate the mutual dialog between these fields.

Quantum Mechanics in Matrix Form (Hardcover, 1st ed. 2018): Gunter Ludyk Quantum Mechanics in Matrix Form (Hardcover, 1st ed. 2018)
Gunter Ludyk
R4,052 Discovery Miles 40 520 Ships in 12 - 17 working days

This book gives an introduction to quantum mechanics with the matrix method. Heisenberg's matrix mechanics is described in detail. The fundamental equations are derived by algebraic methods using matrix calculus. Only a brief description of Schroedinger's wave mechanics is given (in most books exclusively treated), to show their equivalence to Heisenberg's matrix method. In the first part the historical development of Quantum theory by Planck, Bohr and Sommerfeld is sketched, followed by the ideas and methods of Heisenberg, Born and Jordan. Then Pauli's spin and exclusion principles are treated. Pauli's exclusion principle leads to the structure of atoms. Finally, Diracs relativistic quantum mechanics is shortly presented. Matrices and matrix equations are today easy to handle when implementing numerical algorithms using standard software as MAPLE and Mathematica.

Formulation of Uncertainty Relation Between Error and Disturbance in Quantum Measurement by Using Quantum Estimation Theory... Formulation of Uncertainty Relation Between Error and Disturbance in Quantum Measurement by Using Quantum Estimation Theory (Hardcover, 2014 ed.)
Yu Watanabe
R2,827 R1,809 Discovery Miles 18 090 Save R1,018 (36%) Ships in 12 - 17 working days

In this thesis, quantum estimation theory is applied to investigate uncertainty relations between error and disturbance in quantum measurement. The author argues that the best solution for clarifying the attainable bound of the error and disturbance is to invoke the estimation process from the measurement outcomes such as signals from a photodetector in a quantum optical system. The error and disturbance in terms of the Fisher information content have been successfully formulated and provide the upper bound of the accuracy of the estimation. Moreover, the attainable bound of the error and disturbance in quantum measurement has been derived. The obtained bound is determined for the first time by the quantum fluctuations and correlation functions of the observables, which characterize the non-classical fluctuation of the observables. The result provides the upper bound of our knowledge obtained by quantum measurements. The method developed in this thesis will be applied to a broad class of problems related to quantum measurement to build a next-generation clock standard and to successfully detect gravitational waves.

Unified Field Theories in the First Third of XXth Century (Hardcover): V.P. Vizgin Unified Field Theories in the First Third of XXth Century (Hardcover)
V.P. Vizgin
R2,653 Discovery Miles 26 530 Ships in 10 - 15 working days

Despite the rapidly expanding ambit of physical research and the continual appearance of new branches of physics, the main thrust in its development has been the attempt at a theoretical synthesis of the entire body of physical knowledge. Vladimir Vizgin's work presents perhaps the first systematic historico-scientific study of the formation and development of the unified field theories in the general context of 20th century physics. Concentrating on the first three decades of the century and drawing extensively on Russian sources, the author analyses the first successes, failures and paths of further development of the unified field theories. He presents the evolution of these theories as a process of interaction/competition between the geometric field and quantum research programs, and ascertains the relevance of these theories for fundamental concepts in modern field theory.

Characterizing Entanglement and Quantum Correlations Constrained by Symmetry (Hardcover, 1st ed. 2017): Jordi Tura i Brugues Characterizing Entanglement and Quantum Correlations Constrained by Symmetry (Hardcover, 1st ed. 2017)
Jordi Tura i Brugues
R3,700 R3,433 Discovery Miles 34 330 Save R267 (7%) Ships in 12 - 17 working days

This thesis focuses on the study and characterization of entanglement and nonlocal correlations constrained under symmetries. It includes original results as well as detailed methods and explanations for a number of different threads of research: positive partial transpose (PPT) entanglement in the symmetric states; a novel, experimentally friendly method to detect nonlocal correlations in many-body systems; the non-equivalence between entanglement and nonlocality; and elemental monogamies of correlations. Entanglement and nonlocal correlations constitute two fundamental resources for quantum information processing, as they allow novel tasks that are otherwise impossible in a classical scenario. However, their elusive characterization is still a central problem in quantum information theory. The main reason why such a fundamental issue remains a formidable challenge lies in the exponential growth in complexity of the Hilbert space as well as the space of multipartite correlations. Physical systems of interest, on the other hand, display symmetries that can be exploited to reduce this complexity, opening the possibility that some of these questions become tractable for such systems.

Materials Modelling using Density Functional Theory - Properties and Predictions (Hardcover): Feliciano Giustino Materials Modelling using Density Functional Theory - Properties and Predictions (Hardcover)
Feliciano Giustino
R4,148 Discovery Miles 41 480 Ships in 10 - 15 working days

This book is an introduction to the quantum theory of materials and first-principles computational materials modelling. It explains how to use density functional theory as a practical tool for calculating the properties of materials without using any empirical parameters. The structural, mechanical, optical, electrical, and magnetic properties of materials are described within a single unified conceptual framework, rooted in the Schroedinger equation of quantum mechanics, and powered by density functional theory. This book is intended for senior undergraduate and first-year graduate students in materials science, physics, chemistry, and engineering who are approaching for the first time the study of materials at the atomic scale. The inspiring principle of the book is borrowed from one of the slogans of the Perl programming language, 'Easy things should be easy and hard things should be possible'. Following this philosophy, emphasis is placed on the unifying concepts, and on the frequent use of simple heuristic arguments to build on one's own intuition. The presentation style is somewhat cross disciplinary; an attempt is made to seamlessly combine materials science, quantum mechanics, electrodynamics, and numerical analysis, without using a compartmentalized approach. Each chapter is accompanied by an extensive set of references to the original scientific literature and by exercises where all key steps and final results are indicated in order to facilitate learning. This book can be used either as a complement to the quantum theory of materials, or as a primer in modern techniques of computational materials modelling using density functional theory.

History and Evolution of Concepts in Physics (Hardcover, 2014 ed.): Harry Varvoglis History and Evolution of Concepts in Physics (Hardcover, 2014 ed.)
Harry Varvoglis
R1,832 Discovery Miles 18 320 Ships in 12 - 17 working days

Our understanding of nature, and in particular of physics and the laws governing it, has changed radically since the days of the ancient Greek natural philosophers. This book explains how and why these changes occurred, through landmark experiments as well as theories that - for their time - were revolutionary. The presentation covers Mechanics, Optics, Electromagnetism, Thermodynamics, Relativity Theory, Atomic Physics and Quantum Physics. The book places emphasis on ideas and on a qualitative presentation, rather than on mathematics and equations. Thus, although primarily addressed to those who are studying or have studied science, it can also be read by non-specialists. The author concludes with a discussion of the evolution and organization of universities, from ancient times until today, and of the organization and dissemination of knowledge through scientific publications and conferences.

Search for Higgs Boson Pair Production in the bb   +  - Decay Channel - with the CMS detector at the LHC (Hardcover, 1st ed.... Search for Higgs Boson Pair Production in the bb + - Decay Channel - with the CMS detector at the LHC (Hardcover, 1st ed. 2018)
Luca Cadamuro
R2,903 Discovery Miles 29 030 Ships in 10 - 15 working days

This thesis presents innovative contributions to the CMS experiment in the new trigger system for the restart of the LHC collisions in Run II, as well as original analysis methods and important results that led to official publications of the Collaboration. The author's novel reconstruction algorithms, deployed on the Field-Programmable Gate Arrays of the new CMS trigger architecture, have brought a gain of over a factor 2 in efficiency for the identification of tau leptons, with a very significant impact on important H boson measurements, such as its decays to tau lepton pairs and the search for H boson pair production. He also describes a novel analysis of HH bb tautau, a high priority physics topic in a difficult channel. The original strategy, optimisation of event categories, and the control of the background have made the result one of the most sensitive concerning the self-coupling of the Higgs boson among all possible channels at the LHC.

Quantum Optics for Engineers (Hardcover): F.J. Duarte Quantum Optics for Engineers (Hardcover)
F.J. Duarte
R4,765 Discovery Miles 47 650 Ships in 12 - 17 working days

Quantum Optics for Engineers provides a transparent and methodical introduction to quantum optics via the Dirac's bra-ket notation with an emphasis on practical applications and basic aspects of quantum mechanics such as Heisenberg's uncertainty principle and Schrodinger's equation. Self-contained and using mainly first-year calculus and algebra tools, the book: Illustrates the interferometric quantum origin of fundamental optical principles such as diffraction, refraction, and reflection Provides a transparent introduction, via Dirac's notation, to the probability amplitude of quantum entanglement Explains applications of the probability amplitude of quantum entanglement to optical communications, quantum cryptography, quantum teleportation, and quantum computing. Quantum Optics for Engineers is succinct, transparent, and practical, revealing the intriguing world of quantum entanglement via many practical examples. Ample illustrations are used throughout its presentation and the theory is presented in a methodical, detailed approach.

Scattering of Particles and Radiation in Astrophysical Environments (Hardcover, 1st ed. 2016): Nicholas R. Lewkow Scattering of Particles and Radiation in Astrophysical Environments (Hardcover, 1st ed. 2016)
Nicholas R. Lewkow
R2,873 Discovery Miles 28 730 Ships in 10 - 15 working days

This thesis considers the non-equilibrium and energy transfer processes involved in the evolution of astrophysical gases and plasmas. Momentum-energy transfer in collisions of atoms, molecules and ions governs the evolution of interacting astrophysical gas and plasmas. These collisions require an accurate quantum mechanical description and the work presented here develops a unified kinetic and quantum-mechanical model for this consideration. The multi-scale computational approach implemented here takes into account non-thermal distributions of atomic particles and clarifies their role in the evolution of interstellar gas and planetary atmospheres. As shown, the physical parameters of non-thermal distributions strongly depend on the differential cross sections of atomic, molecular and ion collisions. Readers will find a detailed description of the energy relaxation of energetic atoms, produced in the interstellar gas by the solar and stellar wind plasmas. Computation of the non-thermal diffuse background of energetic helium atoms in the heliosphere is also included for evaluation of the contributions from local and cosmic sources and analysis of related satellite observations. Work involving modeling of energetic particle precipitation into planetary atmospheres and formation of the planetary and exoplanetary escape fluxes has been performed with very accurate cross sections, describing momentum-energy transfer processes with high precision. Results of the Monte Carlo simulations, carried out for the Mars atmosphere at different solar conditions, can be used for analysis of observational data for Mars atmospheric escape and investigation into the history of Martian water.

Advances in One-Dimensional Wave Mechanics - Towards A Unified Classical View (Hardcover, 2014 ed.): Zhuangqi Cao, Cheng Yin Advances in One-Dimensional Wave Mechanics - Towards A Unified Classical View (Hardcover, 2014 ed.)
Zhuangqi Cao, Cheng Yin
R3,335 Discovery Miles 33 350 Ships in 12 - 17 working days

"Advances in One-Dimensional Wave Mechanics" provides a comprehensive description of the motion of microscopic particles in one-dimensional, arbitrary-shaped potentials based on the analogy between Quantum Mechanics and Electromagnetism. Utilizing a deeper understanding of the wave nature of matter, this book introduces the concept of the scattered sub-waves and a series of new analytical results using the Analytical Transfer Matrix (ATM) method. This work will be useful for graduate students majoring in physics, mainly in basic quantum theory, as well as for academic researchers exploring electromagnetism, particle physics, and wave mechanics and for experts in the field of optical waveguide and integrated optics.

Prof. Zhuangqi Cao is a Professor of Physics at Shanghai Jiao Tong University, China.

Dr. Cheng Yin is a teacher at Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology, Hohai University, China.

The Quantum Mechanics Conundrum - Interpretation and Foundations (Hardcover, 1st ed. 2019): Gennaro Auletta The Quantum Mechanics Conundrum - Interpretation and Foundations (Hardcover, 1st ed. 2019)
Gennaro Auletta
R5,782 Discovery Miles 57 820 Ships in 10 - 15 working days

This comprehensive volume gives a balanced and systematic treatment of both the interpretation and the mathematical-conceptual foundations of quantum mechanics. It is written in a pedagogical style and addresses many thorny problems of fundamental physics. The first aspect concerns Interpretation. The author raises the central problems: formalism, measurement, non-locality, and causality. The main positions on these subjects are presented and critically analysed. The aim is to show that the main schools can converge on a core interpretation. The second aspect concerns Foundations. Here it is shown that the whole theory can be grounded on information theory. The distinction between information and signal leads us to integrating quantum mechanics and relativity. Category theory is presented and its significance for quantum information shown; the logic and epistemological bases of the theory are assessed. Of relevance to all physicists and philosophers with an interest in quantum theory and its foundations, this book is destined to become a classic work.

Irreducible Cartesian Tensors (Hardcover): Robert F Snider Irreducible Cartesian Tensors (Hardcover)
Robert F Snider
R3,716 Discovery Miles 37 160 Ships in 12 - 17 working days

This monograph covers the concept of cartesian tensors with the needs and interests of physicists, chemists and other physical scientists in mind. After introducing elementary tensor operations and rotations, spherical tensors, combinations of tensors are introduced, also covering Clebsch-Gordan coefficients. After this, readers from the physical sciences will find generalizations of the results to spinors and applications to quantum mechanics.

Mathematical Modelling for Next-Generation Cryptography - CREST Crypto-Math Project (Hardcover, 1st ed. 2018): Tsuyoshi Takagi,... Mathematical Modelling for Next-Generation Cryptography - CREST Crypto-Math Project (Hardcover, 1st ed. 2018)
Tsuyoshi Takagi, Masato Wakayama, Keisuke Tanaka, Noboru Kunihiro, Kazufumi Kimoto, …
R4,429 Discovery Miles 44 290 Ships in 12 - 17 working days

This book presents the mathematical background underlying security modeling in the context of next-generation cryptography. By introducing new mathematical results in order to strengthen information security, while simultaneously presenting fresh insights and developing the respective areas of mathematics, it is the first-ever book to focus on areas that have not yet been fully exploited for cryptographic applications such as representation theory and mathematical physics, among others. Recent advances in cryptanalysis, brought about in particular by quantum computation and physical attacks on cryptographic devices, such as side-channel analysis or power analysis, have revealed the growing security risks for state-of-the-art cryptographic schemes. To address these risks, high-performance, next-generation cryptosystems must be studied, which requires the further development of the mathematical background of modern cryptography. More specifically, in order to avoid the security risks posed by adversaries with advanced attack capabilities, cryptosystems must be upgraded, which in turn relies on a wide range of mathematical theories. This book is suitable for use in an advanced graduate course in mathematical cryptography, while also offering a valuable reference guide for experts.

Quantum Mechanics (Paperback, 2nd edition): B.H. Bransden, C.J. Joachain Quantum Mechanics (Paperback, 2nd edition)
B.H. Bransden, C.J. Joachain
R2,165 Discovery Miles 21 650 Ships in 12 - 17 working days

@lt;P@gt;This book gives a modern, comprehensive introduction to the principles of quantum mechanics, to the main approximation methods and to the application of quantum theory to a wide variety of systems. The needs of students having an average mathematical ability are kept very much in mind, with the avoidance of complex mathematical arguments and any undue compression of material@lt;/P@gt;

Quantised Vortices - A Handbook of Topological Excitations (Hardcover): Tapio Simula Quantised Vortices - A Handbook of Topological Excitations (Hardcover)
Tapio Simula
R2,301 Discovery Miles 23 010 Ships in 10 - 15 working days

Vortices comprising swirling motion of matter are observable in classical systems at all scales ranging from atomic size to the scale of galaxies. In quantum mechanical systems, such vortices are robust entities whose behaviours are governed by the strict rules of topology. The physics of quantum vortices is pivotal to basic science of quantum turbulence and high temperature superconductors, and underpins emerging quantum technologies including topological quantum computation. This handbook is aimed at providing a dictionary style portal to the fascinating quantum world of vortices.

Extensions to the No-Core Shell Model - Importance-Truncation, Regulators and Reactions (Hardcover, 2013 ed.): Michael Karl... Extensions to the No-Core Shell Model - Importance-Truncation, Regulators and Reactions (Hardcover, 2013 ed.)
Michael Karl Gerhard Kruse
R3,840 R3,296 Discovery Miles 32 960 Save R544 (14%) Ships in 12 - 17 working days

Extensions to the No-Core Shell Model presents three extensions to the No-Core Shell Model (NCSM) that allow for calculations of heavier nuclei, specifically for the p-shell nuclei. The Importance-Truncated NCSM (IT-NCSM) formulated on arguments of multi-configurational perturbation theory selects a small set of basis states from the initially large basis space in which the Hamiltonian is diagonalized. Previous IT-NCSM calculations have proven reliable, however, there has been no thorough investigation of the inherent error in the truncated IT-NCSM calculations. This thesis provides a detailed study of IT-NCSM calculations and compares them to full NCSM calculations to judge the accuracy of IT-NCSM in heavier nuclei. When IT-NCSM calculations are performed, one often needs to extrapolate the ground-state energy from the finite basis (or model) spaces to the full NCSM model space. In this thesis a careful investigation of the extrapolation procedures was performed. On a related note, extrapolations in the NCSM are commonplace, but up to recently did not have the ultraviolet (UV) or infrared (IR) physics under control. This work additionally presents a method that maps the NCSM parameters into an effective-field theory inspired framework, in which the UV and IR physics are treated appropriately. The NCSM is well-suited to describe bound-state properties of nuclei, but is not well-adapted to describe loosely bound systems, such as the exotic nuclei near the neutron drip line. With the inclusion of the Resonating Group Method (RGM), the NCSM / RGM can provide a first-principles description of exotic nuclei and the first extension of the NCSM.

Topological Orders with Spins and Fermions - Quantum Phases and Computation (Hardcover, 1st ed. 2019): Laura Ortiz Martin Topological Orders with Spins and Fermions - Quantum Phases and Computation (Hardcover, 1st ed. 2019)
Laura Ortiz Martin
R2,873 Discovery Miles 28 730 Ships in 10 - 15 working days

This thesis deals with topological orders from two different perspectives: from a condensed matter point of view, where topological orders are considered as breakthrough phases of matter; and from the emerging realm of quantum computation, where topological quantum codes are considered the most appealing platform against decoherence. The thesis reports remarkable studies from both sides. It thoroughly investigates a topological order called the double semion model, a counterpart of the Kitaev model but exhibiting richer quasiparticles as excitations. A new model for symmetry enriched topological order is constructed, which adds an onsite global symmetry to the double semion model. Using this topological phase, a new example of topological code is developed, the semion code, which is non-CSS, additive, non-Pauli and within the stabiliser formalism. Furthermore, the thesis analyses the Rashba spin-orbit coupling within topological insulators, turning the helical edge states into generic edges modes with potential application in spinstronics. New types of topological superconductors are proposed and the novel properties of the correspondingly created Majorana fermions are investigated. These Majorana fermions have inherent properties enabling braiding and the performance of logical gates as fundamental blocks for a universsal quantum computator.

Quantum Systems in Chemistry and Physics - Progress in Methods and Applications (Hardcover, 2013 ed.): Kiyoshi Nishikawa, Jean... Quantum Systems in Chemistry and Physics - Progress in Methods and Applications (Hardcover, 2013 ed.)
Kiyoshi Nishikawa, Jean Maruani, Erkki J. Brandas, Gerardo Delgado-Barrio, Piotr Piecuch
R10,573 R8,400 Discovery Miles 84 000 Save R2,173 (21%) Ships in 12 - 17 working days

Quantum Systems in Chemistry and Physics: Progress in Methods and Applications is a collection of 33 selected papers from the scientific contributions presented at the 16th International Workshop on Quantum Systems in Chemistry and Physics (QSCP-XVI), held at Ishikawa Prefecture Museum of Art in Kanazawa, Japan, from September 11th to 17th, 2011. The volume discusses the state of the art, new trends, and the future of methods in mol- ecular quantum mechanics and their applications to a wide range of problems in physics, chemistry, and biology. The breadth and depth of the scientific topics discussed during QSCP-XVI appears in the classification of the contributions in six parts: I. Fundamental Theory II. Molecular Processes III. Molecular Structure IV. Molecular Properties V. Condensed Matter VI. Biosystems. Quantum Systems in Chemistry and Physics: Progress in Methods and Applications is written for advanced graduate students as well as for professionals in theoretical chemi- cal physics and physical chemistry. The book covers current scientific topics in mole- cular, nano, material, and bio sciences and provides insights into methodological deve- lopments and applications of quantum theory in physics, chemistry, and biology that have become feasible at the end of 2011.

Operational Symmetries - Basic Operations in Physics (Hardcover, 1st ed. 2017): Heinrich Saller Operational Symmetries - Basic Operations in Physics (Hardcover, 1st ed. 2017)
Heinrich Saller
R5,107 Discovery Miles 51 070 Ships in 12 - 17 working days

This book describes the endeavour to relate the particle spectrum with representations of operational electroweak spacetime, in analogy to the atomic spectrum as characterizing representations of hyperbolic space. The spectrum of hyperbolic position space explains the properties of the nonrelativistic atoms; the spectrum of electroweak spacetime is hoped to explain those of the basic interactions and elementary particles. In this book, the theory of operational symmetries is developed from the numbers, from Plato's and Kepler's symmetries over the simple Lie groups to their applications in nonrelativistic, special relativistic and general relativistic quantum theories with the atomic spectrum for hyperbolic position and, in first attempts, the particle spectrum for electroweak spacetime. The standard model of elementary particles and interactions is characterized by a symmetry group. In general, as initiated by Weyl and stressed by Heisenberg, quantum theory can be built as a theory of operation groups and their unitary representations. In such a framework, time, position and spacetime is modeled by equivalence classes of symmetry groups. For a unification on this road, the quest is not for a final theory with a basic equation for basic particles, but for the basic operation group and its representations.

Foundations of Quantum Mechanics (Hardcover): T.D. Black, Etc, M.M. Nieto, M.O. Scully, R.M. Sinclair, H.S. Pilloff Foundations of Quantum Mechanics (Hardcover)
T.D. Black, Etc, M.M. Nieto, M.O. Scully, R.M. Sinclair, …
R3,509 Discovery Miles 35 090 Ships in 10 - 15 working days

The advent of new experimental techniques has made possible a new generation of more precise experimental tests of fundamental quantum mechanicsl. This workshop addressed the confrontation of new and proposed experimental tests of quantum mechanics with standard and nonstandard quantum theory. The broad, cross-disciplinary view of the subject brought together eminent theorists and experimentalists from diverse fields.

Out-of-Equilibrium Physics of Correlated Electron Systems (Hardcover, 1st ed. 2018): Roberta Citro, Ferdinando Mancini Out-of-Equilibrium Physics of Correlated Electron Systems (Hardcover, 1st ed. 2018)
Roberta Citro, Ferdinando Mancini
R3,603 Discovery Miles 36 030 Ships in 12 - 17 working days

This book is a wide-ranging survey of the physics of out-of-equilibrium systems of correlated electrons, ranging from the theoretical, to the numerical, computational and experimental aspects. It starts from basic approaches to non-equilibrium physics, such as the mean-field approach, then proceeds to more advanced methods, such as dynamical mean-field theory and master equation approaches. Lastly, it offers a comprehensive overview of the latest advances in experimental investigations of complex quantum materials by means of ultrafast spectroscopy.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Excitons and Cooper Pairs - Two…
Monique Combescot, Shiue-Yuan Shiau Hardcover R3,139 Discovery Miles 31 390
A Combined Data and Power Management…
Jens Eickhoff Hardcover R4,757 Discovery Miles 47 570
Multivariate Time Series With Linear…
Victor Gomez Hardcover R3,758 Discovery Miles 37 580
Grid Generation and Adaptive Algorithm
M. Luskin, Etc, … Hardcover R2,619 Discovery Miles 26 190
Introduction to Data Systems - Building…
Thomas Bressoud, David White Hardcover R2,329 Discovery Miles 23 290
Traces and Determinants of…
Simon Scott Hardcover R3,872 Discovery Miles 38 720
Analysis and Enumeration - Algorithms…
Andrea Marino Hardcover R3,124 R2,442 Discovery Miles 24 420
The Wave Function - Essays on the…
David Albert, Alyssa Ney Hardcover R4,198 Discovery Miles 41 980
Computational Probability - Algorithms…
John H. Drew, Diane L. Evans, … Hardcover R4,184 Discovery Miles 41 840
Symmetry in Quantum Theory of Gravity
Chris Fields, Antonino Marciano Hardcover R1,189 Discovery Miles 11 890

 

Partners