![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Quantum physics (quantum mechanics)
This volume documents the first International Workshop on Atomic Scale Interconnection Machines organised by the European Integrated Project AtMol in June 2011 in Singapore. The four sessions, discussed here in revised contributions by high level speakers, span the subjects of multi-probe UHV instrumentation, atomic scale nano-material nanowires characterization, atomic scale surface conductance measurements, surface atomic scale mechanical machineries. This state-of-the-art account brings academic researchers and industry engineers access to the tools they need to be at the forefront of the atomic scale technology revolution.
This book describes the subject of electrodynamics at classical as well as quantum level, developed as an interaction at a distance. Thus it has electric charges interacting with one another directly and not through the medium of a field. In general such an interaction travels forward and backward in time symmetrically, thus apparently violating the principle of causality. It turns out, however, that in such a description the cosmological boundary conditions become very important. The theory therefore works only in a cosmology with the right boundary conditions; but when it does work it is free from the divergences that plague a quantum field theory.
This book takes the reader for a short journey over the structures of matter showing that their main properties can be obtained even at a quantitative level with a minimum background knowledge including, besides first year calculus and physics, the extensive use of dimensional analysis and the three cornerstones of science, namely the atomic idea, the wave-particle duality and the minimization of energy as the condition for equilibrium. Dimensional analysis employing the universal physical constants and combined with "a little imagination and thinking", to quote Feynman, allow an amazing short-cut derivation of several quantitative results concerning the structures of matter. In the current 2nd edition, new material and more explanations with more detailed derivations were added to make the book more student-friendly. Many multiple-choice questions with the correct answers at the end of the book, solved and unsolved problems make the book also suitable as a textbook. This book is of interest to students of physics, engineering and other science and to researchers in physics, material science, chemistry and engineering who may find stimulating the alternative derivation of several real world results which sometimes seem to pop out the magician's hat.
This textbook teaches particle physics very didactically. It supports learning and teaching with numerous worked examples, questions and problems with answers. Numerous tables and diagrams lead to a better understanding of the explanations. The content of the book covers all important topics of particle physics: Elementary particles are classified from the point of view of the four fundamental interactions. The nomenclature used in particle physics is explained. The discoveries and properties of known elementary particles and resonances are given. The particles considered are positrons, muon, pions, anti-protons, strange particles, neutrino and hadrons. The conservation laws governing the interactions of elementary particles are given. The concepts of parity, spin, charge conjugation, time reversal and gauge invariance are explained. The quark theory is introduced to explain the hadron structure and strong interactions. The solar neutrino problem is considered. Weak interactions are classified into various types, and the selection rules are stated. Non-conservation of parity and the universality of the weak interactions are discussed. Neutral and charged currents, discovery of W and Z bosons and the early universe form important topics of the electroweak interactions. The principles of high energy accelerators including colliders are elaborately explained. Additionally, in the book detectors used in nuclear and particle physics are described. This book is on the upper undergraduate level.
The classical mechanistic idea of nature that prevailed in science during the eighteenth and nineteenth centuries was an essentially mindless conception: the physically described aspects of nature were asserted to be completely determined by prior physically described aspects alone, with our conscious experiences entering only passively. During the twentieth century the classical concepts were found to be inadequate. In the new theory, quantum mechanics, our conscious experiences enter into the dynamics in specified ways not fixed by the physically described aspects alone. Consequences of this radical change in our understanding of the connection between mind and brain are described. This second edition contains two new chapters investigating the role of quantum phenomena in the problem of free will and in the placebo effect.
The project reported here was a search for new super symmetric particles in proton-proton collisions at the LHC. It has produced some of the world's best exclusion limits on such new particles. Furthermore, dedicated simulation studies and data analyses have also yielded essential input to the upgrade activities of the CMS collaboration, both for the Phase-1 pixel detector upgrade and for the R&D studies in pursuit of a Phase-2 end cap calorimeter upgrade.
This thesis presents an exact theoretical study of dynamical correlation functions in different phases of a two-dimensional quantum spin liquid. By calculating the dynamical spin structure factor and the Raman scattering cross section, this thesis shows that there are salient signatures-qualitative and quantitative-of the Majorana fermions and the gauge fluxes emerging as effective degrees of freedom in the exactly solvable Kitaev honeycomb lattice model. The model is a representative of a class of spin liquids with Majorana fermions coupled to Z2 gauge fields. The qualitative features of the response functions should therefore be characteristic for this broad class of topological states.
Scientists have always attempted to explain the world in terms
of a few unifying principles. In the fifth century B.C. Democritus
boldly claimed that reality is simply a collection of indivisible
and eternal parts or atoms. Over the centuries his doctrine has
remained a landmark, and much progress in physics is due to its
distinction between subjective perception and objective reality.
This book discusses theory reduction in physics, which states that
the whole is nothing more than the sum of its parts: the properties
of things are directly determined by their constituent parts.
Reductionism deals with the relation between different theories
that address different levels of reality, and uses extrapolations
to apply that relation in different sciences. Reality shows a
complex structure of connections, and the dream of a unified
interpretation of all phenomena in several simple laws continues to
attract anyone with genuine philosophical and scientific interests.
If the most radical reductionist point of view is correct, the
relationship between disciplines is strictly inclusive: chemistry
becomes physics, biology becomes chemistry, and so on. Eventually,
only one science, indeed just a single theory, would survive, with
all others merging in the Theory of Everything. Is the current
coexistence of different sciences a mere historical venture which
will end when the Theory of Everything has been established? Can
there be a unified description of nature?
In this book, a modern unified theory of dispersion forces on atoms and bodies is presented which covers a broad range of different aspects and scenarios. Macroscopic quantum electrodynamics is applied within the context of dispersion forces. In contrast to the normal-mode quantum electrodynamics traditionally used to study dispersion forces, the new approach allows to consider realistic material properties including absorption and is flexible enough to be applied to a broad range of geometries. Thus general properties of dispersion forces like their non-additivity and the relation between microscopic and macroscopic dispersion forces are discussed. It is demonstrated how the general results can be used to obtain dispersion forces on atoms in the presence of bodies of various shapes and materials. In particular, nontrivial magnetic properties of the bodies, bodies of irregular shapes, the role of material absorption, and dynamical forces for excited atoms are discussed. This volume 2 deals especially with quantum electrodynamics, dispersion forces, Casimir forces, asymptotic power laws, quantum friction and universal scaling laws. The book gives both the specialist and those new to the field a thorough overview over recent results in the context of dispersion forces. It provides a toolbox for studying dispersion forces in various contexts.
Several of the very foundations of the cosmological standard model
the baryon asymmetry of the universe, dark matter, and the origin
of the hot big bang itself still call for an explanation from the
perspective of fundamental physics. This workadvocates one
intriguing possibility for a consistent cosmology that fills in the
theoretical gaps while being fully in accordance with the
observational data. At very high energies, the universe might have
been in a false vacuum state that preserved B-L, the difference
between the baryon number B and the lepton number L as a local
symmetry. In this state, the universe experienced a stage of hybrid
inflation that only ended when the false vacuum became unstable and
decayed, in the course of a waterfall transition, into a phase with
spontaneously broken B-L symmetry. This B-L Phase Transition was
accompanied by tachyonic preheating that transferred almost the
entire energy of the false vacuum into a gas of B-L Higgs bosons,
which in turn decayed into heavy Majorana neutrinos. Eventually,
these neutrinos decayed into massless radiation, thereby producing
the entropy of the hot big bang, generating the baryon asymmetry of
the universe via the leptogenesis mechanism and setting the stage
for the production of dark matter. Next to a variety of conceptual
novelties and phenomenological predictions, the main achievement of
the thesis is hence the fascinating notion that the leading role in
the first act of our universe might have actually been played by
neutrinos.
This work addresses dynamical aspects of quantum criticality in two space dimensions. It probes two energy scales: the amplitude (Higgs) mode, which describes fluctuations of the order parameter amplitude in the broken symmetry phase and the dual vortex superfluid stiffness. The results demonstrate that the amplitude mode can be probed arbitrarily close to criticality in the universal line shape of the scalar susceptibility and the optical conductivity. The hallmark of quantum criticality is the emergence of softening energy scales near the phase transition. In addition, the author employs the charge-vortex duality to show that the capacitance of the Mott insulator near the superfluid to insulator phase transition serves as a probe for the dual vortex superfluid stiffness. The numerical methods employed are described in detail, in particular a worm algorithm for O(N) relativistic models and methods for numerical analytic continuation of quantum Monte Carlo data. The predictions obtained are particularly relevant to recent experiments in cold atomic systems and disordered superconductors.
This book covers the theory and applications of the Wigner phase space distribution function and its symmetry properties. The book explains why the phase space picture of quantum mechanics is needed, in addition to the conventional Schroedinger or Heisenberg picture. It is shown that the uncertainty relation can be represented more accurately in this picture. In addition, the phase space picture is shown to be the natural representation of quantum mechanics for modern optics and relativistic quantum mechanics of extended objects.
An invaluable supplement to standard textbooks on quantum mechanics, this unique introduction to the general theoretical framework of contemporary physics focuses on conceptual, epistemological, and ontological issues. The theory is developed by pursuing the question: what does it take to have material objects that neither collapse nor explode as soon as they are formed? The stability of matter thus emerges as the chief reason why the laws of physics have the particular form that they do.The first of the book's three parts familiarizes the reader with the basics through a brief historical survey and by following Feynman's route to the Schroedinger equation. The necessary mathematics, including the special theory of relativity, is introduced along the way, to the point that all relevant theoretical concepts can be adequately grasped. Part II takes a closer look. As the theory takes shape, it is applied to various experimental arrangements. Several of these are central to the discussion in the final part, which aims at making epistemological and ontological sense of the theory. Pivotal to this task is an understanding of the special status that quantum mechanics attributes to measurements - without dragging in "the consciousness of the observer." Key to this understanding is a rigorous definition of "macroscopic" which, while rarely even attempted, is provided in this book.
This text focuses on the algebraic formulation of quantum field theory, from the introductory aspects to the applications to concrete problems of physical interest. The book is divided in thematic chapters covering both introductory and more advanced topics. These include the algebraic, perturbative approach to interacting quantum field theories, algebraic quantum field theory on curved spacetimes (from its structural aspects to the applications in cosmology and to the role of quantum spacetimes), algebraic conformal field theory, the Kitaev's quantum double model from the point of view of local quantum physics and constructive aspects in relation to integrable models and deformation techniques. The book is addressed to master and graduate students both in mathematics and in physics, who are interested in learning the structural aspects and the applications of algebraic quantum field theory.
This thesis provides an introduction to the physics of the Standard Model and beyond, and to the methods used to analyse Large Hadron Collider (LHC) data. The 'hierarchy problem', astrophysical data and experiments on neutrinos indicate that new physics can be expected at the now accessible TeV scale. This work investigates extensions of the Standard Model with gravitons and gravitinos (in the context of supergravity). The production of these particles in association with jets is studied as one of the most promising avenues for researching new physics at the LHC. Advanced simulation techniques and tools, such as algorithms allowing the computation of Feynman graphs and helicity amplitudes are first developed and then employed.
In addition to traditional topics, this book includes: selective measurements, Wigner's Theorem of symmetry transformations, generators of quantum transformations, supersymmetry, details on the spectra of Hamiltonians and stability of quantum systems, Bose-Fermi oscillators, coherent states, hyperfine structure of the H-atom for any angular momentum, the non-relativistic Lamb shift, anomalous magnetic moment of the electron, Ramsey oscillatory fields methods, measurement, interference and the role of the environment, the AB effect. It also covers: geometric phases, including non-adiabatic and non-cyclic, Schrodinger's cat and quantum decoherence, quantum teleportation and cryptography, quantum dynamics of the Stern-Gerlach effect, Green functions, path intergrals, including constrained dynamics, quantum dynamical principle & variations, systematics of multi-electron atoms, stability of matter, collapse of bosonic matter and the role of spin, etc.
This book covers the theory and applications of the Wigner phase space distribution function and its symmetry properties. The book explains why the phase space picture of quantum mechanics is needed, in addition to the conventional Schroedinger or Heisenberg picture. It is shown that the uncertainty relation can be represented more accurately in this picture. In addition, the phase space picture is shown to be the natural representation of quantum mechanics for modern optics and relativistic quantum mechanics of extended objects.
This thesis presents a theoretical investigation into the creation and exploitation of quantum correlations and entanglement among ultracold atoms. Specifically, it focuses on these non-classical effects in two contexts: (i) tests of local realism with massive particles, e.g., violations of a Bell inequality and the EPR paradox, and (ii) realization of quantum technology by exploitation of entanglement, for example quantum-enhanced metrology. In particular, the work presented in this thesis emphasizes the possibility of demonstrating and characterizing entanglement in realistic experiments, beyond the simple "toy-models" often discussed in the literature. The importance and relevance of this thesis are reflected in a spate of recent publications regarding experimental demonstrations of the atomic Hong-Ou-Mandel effect, observation of EPR entanglement with massive particles and a demonstration of an atomic SU(1,1) interferometer. With a separate chapter on each of these systems, this thesis is at the forefront of current research in ultracold atomic physics.
In this second edition, the following recent papers have been added: "Gauss Codes, Quantum Groups and Ribbon Hopf Algebras", "Spin Networks, Topology and Discrete Physics", "Link Polynomials and a Graphical Calculus" and "Knots Tangles and Electrical Networks". An appendix with a discussion on invariants of embedded graphs and Vassiliev invariants has also been included.This book is an introduction to knot and link invariants as generalized amplitudes (vacuum-vacuum amplitudes) for a quasi-physical process. The demands of knot theory, coupled with a quantum statistical framework, create a context that naturally and powerfully includes an extraordinary range of interrelated topics in topology and mathematical physics. The author takes a primarily combinatorial stance toward knot theory and its relations with these subjects. This has the advantage of providing very direct access to the algebra and to the combinatorial topology, as well as the physical ideas. This book is divided into 2 parts: Part I of the book is a systematic course in knots and physics starting from the ground up. Part II is a set of lectures on various topics related to and sometimes based on Part I. Part II also explores some side-topics such as frictional properties of knots, relations with combinatorics and knots in dynamical systems.
"Elements of Quantum Mechanics" targets as a text for studying and teaching Non-Relativistic Quantum Mechanics for advanced undergraduate and postgraduate students, teachers and faculty at colleges, universities and research institutions, and also for research scholars who need a clear understanding of basics and methods.The chapters are segregated according to the need and demand of courses to be taught for the semesters and for advanced studies. The historical evolution of quantum theory and the need for a radical change in outlook is explained in brief. In order to make the presentation as self-contained as possible, necessary mathematical methods are introduced, building on simple intuitive notions with which the students are familiar. Quantization of the Electro-magnetic field as needed for radiative transitions in atomic, molecular and nuclear physics is simply explained. Field theoretic methods for many-body problems often not treated adequately in introductory textbooks is introduced in the last chapter.
This thesis provides a detailed introduction to quantum oscillation measurement and analysis and offers a connection between Fermi surface properties and superconductivity in high-temperature superconductors. It also discusses the field of iron-based superconductors and tests the models for the appearance of nodes in the superconducting gap of a 111-type pnictide using quantum oscillation measurements combined with band structure calculation. The same measurements were carried out to determine the quasiparticle mass in BaFe2(As1-xPx)2, which is strongly enhanced at the expected quantum critical point. While the lower superconducting critical field shows evidence of quantum criticality, the upper superconducting critical field is not influenced by the quantum critical point. These findings contradict conventional theories, demonstrating the need for a theoretical treatment of quantum critical superconductors, which has not been addressed to date. The quest to discover similar evidence in the cuprates calls for the application of extreme conditions. As such, quantum oscillation measurements were performed under high pressure in a high magnetic field, revealing a negative correlation between quasiparticle mass and superconducting critical temperature.
This book presents research contributions focussing on the introduction of contemporary physics topics - mainly, but not exclusively, quantum physics - into high school currciula. Despite the important advances and discoveries in quantum physics and relativity which have revolutionized our views of nature and our everyday lives, the presence of these topics in high school physics education is still lacking. In this book physics education researchers report on the teaching and learning of quantum physics from different perspectives and discuss the design and use of different pedagogical approaches and educational pathways. There is still much debate as to what content is appropriate at high school level as well what pedagogical approaches and strategies should be adopted to support student learning. Currently there is a greater focus on how to teach modern physics at the high school level rather than classical physics. However, teachers still lack experience and availability of appropriate teaching and learning materials to support the coherent integration of Quantum Physics in high school curricula. All of the 19 papers presented in this book discuss innovative approaches for enhancing physics education in schools.
Gaining a theoretical understanding of the properties of ultra-relativistic dense matter has been one of the most important and challenging goals in quantum chromodynamics (QCD). In this thesis, the author analyzes dense quark matter in QCD with gauge group SU(2) using low-energy effective theoretical techniques and elucidates a novel connection between statistical properties of the Dirac operator spectrum at high baryon chemical potential and a special class of random matrix theories. This work can be viewed as an extension of a similar correspondence between QCD and matrix models which was previously known only for infinitesimal chemical potentials. In future numerical simulations of dense matter the analytical results reported here are expected to serve as a useful tool to extract physical observables such as the BCS gap from numerical data on the Dirac spectrum.
This thesis reports a major breakthrough in discovering the superconducting mechanism in CeCoIn5, the "hydrogen atom" among heavy fermion compounds. By developing a novel theoretical formalism, the study described herein succeeded in extracting the crucial missing element of superconducting pairing interaction from scanning tunneling spectroscopy experiments. This breakthrough provides a theoretical explanation for a series of puzzling experimental observations, demonstrating that strong magnetic interactions provide the quantum glue for unconventional superconductivity. Additional insight into the complex properties of strongly correlated and topological materials was provided by investigating their non-equilibrium charge and spin transport properties. The findings demonstrate that the interplay of magnetism and disorder with strong correlations or topology leads to complex and novel behavior that can be exploited to create the next generation of spin electronics and quantum computing devices. |
![]() ![]() You may like...
Fundamentals of Quantum Programming in…
Weng-Long Chang, Athanasios V Vasilakos
Hardcover
R2,768
Discovery Miles 27 680
A Personal Journey into the Quantum…
Jean Paul Corriveau
Hardcover
Fundamentals of Data Analytics - With a…
Rudolf Mathar, Gholamreza Alirezaei, …
Hardcover
R2,628
Discovery Miles 26 280
Excitons and Cooper Pairs - Two…
Monique Combescot, Shiue-Yuan Shiau
Hardcover
R3,139
Discovery Miles 31 390
Optimization in Machine Learning and…
Anand J. Kulkarni, Suresh Chandra Satapathy
Hardcover
R4,600
Discovery Miles 46 000
|