![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Quantum physics (quantum mechanics)
This thesis presents results crucial to the emerging field of indirect excitons. These specially designed quasiparticles give the unique opportunity to study fundamental properties of quantum degenerate Bose gases in semiconductors. Furthermore, indirect excitons allow for the creation of novel optoelectronic devices where excitons are used in place of electrons. Excitonic devices are explored for the development of advanced signal processing seamlessly coupled with optical communication. The thesis presents and describes the author's imaging experiments that led to the discovery of spin transport of excitons. The many firsts presented herein include the first studies of an excitonic conveyer, leading to the discovery of the dynamical localization-delocalization transition for excitons, and the first excitonic ramp and excitonic diode with no energy-dissipating voltage gradient.
This book is an introduction to the two closely related subjects of quantum optics and quantum information. The book gives a simple, self-contained introduction to both subjects, while illustrating the physical principles of quantum information processing using quantum optical systems. To make the book accessible to those with backgrounds other than physics, the authors also include a brief review of quantum mechanics. Furthermore, some aspects of quantum information, for example those pertaining to recent experiments on cavity QED and quantum dots, are described here for the first time in book form.
This monograph is planned to provide the application of the soliton theory to solve certain practical problems selected from the fields of solid mechanics, fluid mechanics and biomechanics. The work is based mainly on the authors' research carried out at their home institutes, and on some specified, significant results existing in the published literature. The methodology to study a given evolution equation is to seek the waves of permanent form, to test whether it possesses any symmetry properties, and whether it is stable and solitonic in nature. Students of physics, applied mathematics, and engineering are usually exposed to various branches of nonlinear mechanics, especially to the soliton theory. The soliton is regarded as an entity, a quasi-particle, which conserves its character and interacts with the surroundings and other solitons as a particle. It is related to a strange phenomenon, which consists in the propagation of certain waves without attenuation in dissipative media. This phenomenon has been known for about 200 years (it was described, for example, by the Joule Verne's novel Les histoires de Jean Marie Cabidoulin, Ed. Hetzel), but its detailed quantitative description became possible only in the last 30 years due to the exceptional development of computers. The discovery of the physical soliton is attributed to John Scott Russell. In 1834, Russell was observing a boat being drawn along a narrow channel by a pair of horses."
The book provides an introduction to the methods of quantum statistical mechanics used in quantum optics and their application to the quantum theories of the single-mode laser and optical bistability. The generalized representations of Drummond and Gardiner are discussed together with the more standard methods for deriving Fokker--Planck equations. Particular attention is given to the theory of optical bistability formulated in terms of the positive P-representation, and the theory of small bistable systems. This is a textbook at an advanced graduate level. It is intended as a bridge between an introductory discussion of the master equation method and problems of current research.
This fifteenth volume of the Poincare Seminar Series, Dirac Matter, describes the surprising resurgence, as a low-energy effective theory of conducting electrons in many condensed matter systems, including graphene and topological insulators, of the famous equation originally invented by P.A.M. Dirac for relativistic quantum mechanics. In five highly pedagogical articles, as befits their origin in lectures to a broad scientific audience, this book explains why Dirac matters. Highlights include the detailed "Graphene and Relativistic Quantum Physics", written by the experimental pioneer, Philip Kim, and devoted to graphene, a form of carbon crystallized in a two-dimensional hexagonal lattice, from its discovery in 2004-2005 by the future Nobel prize winners Kostya Novoselov and Andre Geim to the so-called relativistic quantum Hall effect; the review entitled "Dirac Fermions in Condensed Matter and Beyond", written by two prominent theoreticians, Mark Goerbig and Gilles Montambaux, who consider many other materials than graphene, collectively known as "Dirac matter", and offer a thorough description of the merging transition of Dirac cones that occurs in the energy spectrum, in various experiments involving stretching of the microscopic hexagonal lattice; the third contribution, entitled "Quantum Transport in Graphene: Impurity Scattering as a Probe of the Dirac Spectrum", given by Helene Bouchiat, a leading experimentalist in mesoscopic physics, with Sophie Gueron and Chuan Li, shows how measuring electrical transport, in particular magneto-transport in real graphene devices - contaminated by impurities and hence exhibiting a diffusive regime - allows one to deeply probe the Dirac nature of electrons. The last two contributions focus on topological insulators; in the authoritative "Experimental Signatures of Topological Insulators", Laurent Levy reviews recent experimental progress in the physics of mercury-telluride samples under strain, which demonstrates that the surface of a three-dimensional topological insulator hosts a two-dimensional massless Dirac metal; the illuminating final contribution by David Carpentier, entitled "Topology of Bands in Solids: From Insulators to Dirac Matter", provides a geometric description of Bloch wave functions in terms of Berry phases and parallel transport, and of their topological classification in terms of invariants such as Chern numbers, and ends with a perspective on three-dimensional semi-metals as described by the Weyl equation. This book will be of broad general interest to physicists, mathematicians, and historians of science.
This book describes a broad research program on quantum communication. Here, a cryptographic key is exchanged by two parties using quantum states of light and the security of the system arises from the fundamental properties of quantum mechanics. The author developed new communication protocols using high-dimensional quantum states so that more than one classical bit is transferred by each photon. This approach helps circumvent some of the non-ideal properties of the experimental system, enabling record key rates on metropolitan distance scales. Another important aspect of the work is the encoding of the key on high-dimensional phase-randomized weak coherent states, combined with so-called decoy states to thwart a class of possible attacks on the system. The experiments are backed up by a rigorous security analysis of the system, which accounts for all known device non-idealities. The author goes on to demonstrate a scalable approach for increasing the dimension of the quantum states, and considers attacks on the system that use optimal quantum cloning techniques. This thesis captures the current state-of-the-art of the field of quantum communication in laboratory systems, and demonstrates that phase-randomized weak coherent states have application beyond quantum communication.
This thesis discusses two key topics: strangeness and charge symmetry violation (CSV) in the nucleon. It also provides a pedagogical introduction to chiral effective field theory tailored to the high-precision era of lattice quantum chromodynamics (QCD). Because the nucleon has zero net strangeness, strange observables give tremendous insight into the nature of the vacuum; they can only arise through quantum fluctuations in which strange-antistrange quark pairs are generated. As a result, the precise values of these quantities within QCD are important in physics arenas as diverse as precision tests of QCD, searches for physics beyond the Standard Model, and the interpretation of dark matter direct-detection experiments. Similarly, the precise knowledge of CSV observables has, with increasing experimental precision, become essential to the interpretation of many searches for physics beyond the Standard Model. In this thesis, the numerical lattice gauge theory approach to QCD is combined with the chiral perturbation theory formalism to determine strange and CSV quantities in a diverse range of observables including the octet baryon masses, sigma terms, electromagnetic form factors, and parton distribution functions. This thesis builds a comprehensive and coherent picture of the current status of understanding of strangeness and charge symmetry violation in the nucleon.
On June 19th 1999, the European Ministers of Education signed the Bologna Dec laration, with which they agreed that the European university education should be uniformized throughout Europe and based on the two cycle bachelor master's sys tem. The Institute for Theoretical Physics at Utrecht University quickly responded to this new challenge and created an international master's programme in Theoret ical Physics which started running in the summer of 2000. At present, the master's programme is a so called prestige master at Utrecht University, and it aims at train ing motivated students to become sophisticated researchers in theoretical physics. The programme is built on the philosophy that modern theoretical physics is guided by universal principles that can be applied to any sub?eld of physics. As a result, the basis of the master's programme consists of the obligatory courses Statistical Field Theory and Quantum Field Theory. These focus in particular on the general concepts of quantum ?eld theory, rather than on the wide variety of possible applica tions. These applications are left to optional courses that build upon the ?rm concep tual basis given in the obligatory courses. The subjects of these optional courses in clude, for instance, Strongly Correlated Electrons, Spintronics, Bose Einstein Con densation, The Standard Model, Cosmology, and String Theory.
Integrable quantum field theories and integrable lattice models have been studied for several decades, but during the last few years new ideas have emerged that have considerably changed the topic. The first group of papers published here is concerned with integrable structures of quantum lattice models related to quantum group symmetries. The second group deals with the description of integrable structures in two-dimensional quantum field theories, especially boundary problems, thermodynamic Bethe ansatz and form factor problems. Finally, a major group of papers is concerned with the purely mathematical framework that underlies the physically-motivated research on quantum integrable models, including elliptic deformations of groups, representation theory of non-compact quantum groups, and quantization of moduli spaces.
1bis text is meant to be a view of the quantum mechanical fonnalism as it develops with the successive introduction of different types oftransfonnations. In particular, it is meant to help the readers with three tasks: acquainting themselves with a general and direct approach to the quantum mechanics of spin one-half and spin-one particles, primarily leptons, photons and massive vector bosons, and to some extent quarks; finding out what some of the related areas of current research interest are; and, last and foremost, trying to understand the subject, beginning with and stressing the principles involved. The exposition is based on finite-dimensional representations of the homogeneous Lorentz group, and the subsequent introduction of gauge transformations, of the Abelian and non Abelian varieties. Reference to classical mechanics is avoided. Acting on the simple basis spinors and vectors, Lorentz transfonnations generate wave and field functions. Equations are obtained by the relativistic generalization of the addition of angular momenta, the wave or field functions being the solutions. For zero mass the equations may be obtained as the limits of the equations for the massive cases or by the application of the Euclidian group in two dimensions. The latter approach is illuminating in that it uncovers a loss in generality resulting from the former. Identifying momenta as eigenvalues of translations demonstrates covariance under the inhomogeneous Lorentz or Poincare group. Various representations of wave and field functions are given."
This thesis represents a unique mix of theoretical work discussing the Lorentz theory of gravity and experimental work searching for supersymmetry with the Compact Muon Solenoid experiment at the Large Hadron Collider. It begins by reviewing a set of widely-discussed theoretical solutions to the cosmological constant problem, including a natural solution provided by the recently developed Lorentz gauge theory of gravity. The Schwartzschild metric, de Sitter space, and quantum versions of the theory are also discussed. The thesis then looks to supersymmetry for an alternative solution. The idea behind supersymmetry is reviewed and an experimental search for supersymmetry is presented. A major contribution was to estimate one of the most significant backgrounds in this search, which arises from top-antitop quark pair production or W boson production in association with multiple jets where the W boson decays into the hadronically-decaying tau leptons and neutrinos. This background was estimated through a novel method involving kinematically analogous events but including a well-measured muon. This search significantly extends limits on supersymmetric partners of gluons from previous searches.
This book is a new edition of Volumes 3 and 4 of Walter Thirring's famous textbook on mathematical physics. The first part is devoted to quantum mechanics and especially to its applications to scattering theory, atoms and molecules. The second part deals with quantum statistical mechanics examining fundamental concepts like entropy, ergodicity and thermodynamic functions. The author builds on an axiomatic basis and uses tools from functional analysis: bounded and unbounded operators on Hilbert space, operator algebras etc. Mathematics is shown to explain the axioms in depth and to provide the right tool for testing numerical data in experiments.
Emerging disciplines in the border zone between physics and chemistry have 1 attracted the attention of historians of science particularly in the last 20 years. 2 Quantum chemistry, as an offshoot of theoretical chemistry, has recently acquired 3 some importance in the history of chemistry. It is the product of close 1 Cf. Hiebert, E. : Discipline Identi cation in Chemistry and Physics, in: Science in Context, 9(2) (1996), 93-119; Nye, M. J. : Physics and Chemistry: Commensurate or Incommensurate Sciences? in: The Invention of Physical Science, Intersections of Mathematics, Theology and Natural Philosophy since the Seventeenth Century - Essays in Honor of Erwin N. Hiebert. Kluwer Academic Publishers, Dordrecht 1992; From Chemical Philosophy to Theoretical Chemistry: Dynamics of Matter and Dynamics of Disciplines, 1800-1950. University of California Press, Berkeley 1994; Servos, J. W. : Physical Chemistry from Ostwald to Pauling, the Making of a Science in America. Princeton University Press, New Jersey 1990; Chemical Sciences in the 20th Century: Bridging Boundaries, edited by Carsten Reinhard. Wiley-VCH, Weinheim 2001 (incl. a comprehensive bibliography). 2 In an earlier article I point out that the term "quantum chemistry" [Quantenchemie] rst appeared in 1929. To my knowledge it was coined by the physicist Arthur Haas. Talks he had del- ered before the Viennese Chemico-Physical Society in the spring of 1929 are assembled in his book: Die Grundlagen der Quantenchemie: Eine Einleitung in vier Vortrage. It was published by the Akademische Verlagsgesellschaft in Leipzig.
n Angular Momentum Theory for Diatomic Molecules, R R method of trees, 3 construct the wave functions of more complicated systems for ex- ple many electron atoms or molecules. However, it was soon realized that unless the continuum is included, a set of hydrogenlike orbitals is not complete. To remedy this defect, Shull and Lowdin [273] - troduced sets of radial functions which could be expressed in terms of Laguerre polynomials multiplied by exponential factors. The sets were constructed in such a way as to be complete, i. e. any radial fu- tion obeying the appropriate boundary conditions could be expanded in terms of the Shull-Lowdin basis sets. Later Rotenberg [256, 257] gave the name "Sturmian" to basis sets of this type in order to emp- size their connection with Sturm-Liouville theory. There is a large and rapidly-growing literature on Sturmian basis functions; and selections from this literature are cited in the bibliography. In 1968, Goscinski [138] completed a study ofthe properties ofSt- rnian basis sets, formulating the problem in such a way as to make generalization of the concept very easy. In the present text, we shall follow Goscinski's easily generalizable definition of Sturmians.
This book provides a comprehensive and up-to-date description of the Josephson effect, a topic of never-ending interest in both fundamental and applied physics. In this volume, world-renowned experts present the unique aspects of the physics of the Josephson effect, resulting from the use of new materials, of hybrid architectures and from the possibility of realizing nanoscale junctions. These new experimental capabilities lead to systems where novel coherent phenomena and transport processes emerge. All this is of great relevance and impact, especially when combined with the didactic approach of the book. The reader will benefit from a general and modern view of coherent phenomena in weakly-coupled superconductors on a macroscopic scale. Topics that have been only recently discussed in specialized papers and in short reviews are described here for the first time and organized in a general framework. An important section of the book is also devoted to applications, with focus on long-term, future applications. In addition to a significant number of illustrations, the book includes numerous tables for comparative studies on technical aspects.
New ideas on the mathematical foundations of quantum mechanics, related to the theory of quantum measurement, as well as the emergence of quantum optics, quantum electronics and optical communications have shown that the statistical structure of quantum mechanics deserves special investigation. In the meantime it has become a mature subject. In this book, the author, himself a leading researcher in this field, surveys the basic principles and results of the theory, concentrating on mathematically precise formulations. Special attention is given to the measurement dynamics. The presentation is pragmatic, concentrating on the ideas and their motivation. For detailed proofs, the readers, researchers and graduate students, are referred to the extensively documented literature.
The first part of this third volume of Wigner's Collected Works is devoted to his analysis of symmetries in quantum mechanics, of the relativistic wave equations, of relativistic particle theory, and of field theory. It is introduced by the masterly annotation of Arthur S. Wightman. Abner Shimony annotates the second part where the reader will find Wigner's contributions to the foundations of quantum physics and to the problems of measurement.
This thesis discusses in detail the measurement of the polarizations of all S-wave vector quarkonium states in LHC proton-proton collisions with the CMS detector. Heavy quarkonium states constitute an ideal laboratory to study non-perturbative effects of quantum chromodynamics and to understand how quarks bind into hadrons. The experimental results are interpreted through an original phenomenological approach, which leads to a coherent picture of quarkonium production cross sections and polarizations within a simple model, dominated by one single color-octet production mechanism. These findings provide new insights into the dynamics of heavy quarkonium production at the LHC, an important step towards a satisfactory understanding of hadron formation within the standard model of particle physics.
This subject is developed for readers with a fairly good knowledge of classical mechanics, electrodynamics and theory of relativity. The mathematics of linear vector spaces and matrices required is included as text and appendices. All principles and techniques are explained with illustrative applications. A Hilbert space formulation of the basic principles and the equations of motion are adopted at the outset. The treatment of linear vector spaces, matrices, angular momentum, relativistic wave equations, quantum field theory and the interpretational problem, is given in a more detailed way than in most books on quantum mechanics. Topics covered include Clebsch-Gordon and Racah coefficients, 9-j symbols and spherical tensors, the Klein-Gordon and the Weyl equations, Feynman's path-integral formalism, Feynman diagrams, Normal Products and Wick's Theorem, the EPR paradox, Hidden-variables theories and Bell's inequality. A number of problems are included with a view to supplementing the text. The present edition includes boundary value problems, representation theory, Fermi-Gas Model of the nuclei, Imaginary-mass Klein-Gordon equation, covariant and contravariant vectors, explanations of the EPR paradox and Einstein's concept of locality versus determinism.
Teaching quantum computation and information is notoriously difficult, because it requires covering subjects from various fields of science, organizing these subjects consistently in a unified way despite their tendency to favor their specific languages, and overcoming the subjects' abstract and theoretical natures, which offer few examples of actual realizations. In this book, we have organized all the subjects required to understand the principles of quantum computation and information processing in a manner suited to physics, mathematics, and engineering courses as early as undergraduate studies.In addition, we provide a supporting package of quantum simulation software from Wolfram Mathematica, specialists in symbolic calculation software. Throughout the book's main text, demonstrations are provided that use the software package, allowing the students to deepen their understanding of each subject through self-practice. Readers can change the code so as to experiment with their own ideas and contemplate possible applications. The information in this book reflects many years of experience teaching quantum computation and information. The quantum simulation-based demonstrations and the unified organization of the subjects are both time-tested and have received very positive responses from the students who have experienced them.
Terahertz (THz) radiation with frequencies between 100 GHz and 30 THz has developed into an important tool of science and technology, with numerous applications in materials characterization, imaging, sensor technologies, and telecommunications. Recent progress in THz generation has provided ultrashort THz pulses with electric field amplitudes of up to several megavolts/cm. This development opens the new research field of nonlinear THz spectroscopy in which strong light-matter interactions are exploited to induce quantum excitations and/or charge transport and follow their nonequilibrium dynamics in time-resolved experiments. This book introduces methods of THz generation and nonlinear THz spectroscopy in a tutorial way, discusses the relevant theoretical concepts, and presents prototypical, experimental, and theoretical results in condensed matter physics. The potential of nonlinear THz spectroscopy is illustrated by recent research, including an overview of the relevant literature.
This thesis reports on experiments in which the motion of a mechanical oscillator is measured with unprecedented precision. The position fluctuations of the oscillator-a glass nanostring-are measured with an imprecision that is sufficient to resolve its quantum zero-point motion within its thermal decoherence time. The concomitant observation of measurement back-action, in accordance with Heisenberg's uncertainty principle, verifies the principles of linear quantum measurements on a macroscopic mechanical object. The record of the measurement is used to perform feedback control so as to suppress both classical thermal motion and quantum measurement back-action. These results verify some of the central and long-standing predictions of quantum measurement theory applied to a macroscopic object. The act of measurement not only perturbs the subject of the measurement-the mechanical oscillator-but also changes the state of the light used to make the measurement. This prediction is verified by demonstrating that the optical field, after having interacted with the mechanical oscillator, contains quantum correlations that render its quadrature fluctuations smaller than those of the vacuum - i.e., the light is squeezed. Lastly, the thesis reports on some of the first feedback control experiments involving macroscopic objects in the quantum regime, together with an exploration of the quantum limit of feedback control. The book offers a pedagogical account of linear measurement theory, its realization via optical interferometry, and contains a detailed guide to precision optical interferometry..
UNDER THE SPELL OF THE GAUGE PRINCIPLE - by G 't HooftThe University of Bologna and its Academy of Sciences, in collaboration with the Italian National Institute for Nuclear Physics and the Italian Physical Society, celebrated in 1998 the bicentenary of a great pioneer in the field of electric phenomena - Luigi Galvani, the father of macroelectricity. During these two centuries, the physics of electric phenomena has given rise first to the Maxwell equations, then to quantum electrodynamics, and finally to the synthesis of all reproducible phenomena, the "Standard Model". A cornerstone of the Standard Model is quantum chromodynamics (QCD), which describes the interaction between quarks and gluons in the innermost part of the structure of matter.The discovery of QCD will be recalled in the future as one of the greatest achievements of mankind. Many physicists, the world over, have contributed to its creation on both the experimental and the theoretical front. Professor Antonino Zichichi has played an important role in this scientific venture, as documented by his works which are reproduced in this invaluable volume.One of the founders of European physics, Professor Victor F Weisskopf, contributes with his memories of the time when QCD had many problems. This volume owes its existence to a founding father of QCD, Professor Vladimir N Gribov, whose sudden demise prevented him from directly contributing to its final edition. Two world leaders in subnuclear theoretical physics, Professors Gerardus 't Hooft and Gabriele Veneziano, illustrate the significance of the contributions of Antonino Zichichi in QCD.
This text builds a solid introduction to the concepts and techniques of quantum mechanics in settings where the phenomena treated are sufficiently simple that the student does not face two fundamental difficulties simultaneously: viz, that of learning quantum mechanics and that of learning how to assess the validity of models or the reliability of approximations. The treatment thus confines itself to systems that can either be solved exactly or be handled by well-controlled, plausible approximations. With few exceptions, this means systems with a small number of degrees of freedom. The exceptions are a first pass at many-electron atoms, the electromagnetic field, and the Dirac equation. (The inclusion of these last two topics reflects the now widely-held belief that every physicist should have at least a nodding acquaintance with these cornerstones of modern physics.) Born in Vienna, Kurt Gottfried emigrated to Canada in 1939 and received his Ph.D. in theoretical physics from MIT in 1955. He is professor of physics at Cornell University, and had previously been at Harvard University, the Massachusetts Institute of Technology, and at CERN in Geneva. He is the co-author of Concepts of Particle Physics (with V.F. Weisskopf), and of The Fallacy of Star Wars and Crisis, Stability, and Nuclear War. Gottfried has an active interest in arms control and human rights and is a founder and currently the Chair of the Union of Concerned Scientists. |
![]() ![]() You may like...
Big Data and Smart Service Systems
Xiwei Liu, Rangachari Anand, …
Hardcover
Digitisation of Culture: Namibian and…
Dharm Singh Jat, Jurgen Sieck, …
Hardcover
R2,916
Discovery Miles 29 160
Towards Mathematics, Computers and…
Leonardo Bacelar Lima Santos, Rogerio Galante Negri, …
Hardcover
R2,900
Discovery Miles 29 000
Linear and Integer Programming Made Easy
T.C. Hu, Andrew B. Kahng
Hardcover
R2,248
Discovery Miles 22 480
|