![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Quantum physics (quantum mechanics)
This book covers the theory and applications of the Wigner phase space distribution function and its symmetry properties. The book explains why the phase space picture of quantum mechanics is needed, in addition to the conventional Schroedinger or Heisenberg picture. It is shown that the uncertainty relation can be represented more accurately in this picture. In addition, the phase space picture is shown to be the natural representation of quantum mechanics for modern optics and relativistic quantum mechanics of extended objects.
Compiled to illustrate the recent history of quantum field theory and its trends, this collection of selected reprints by Frohlich aims to be a comprehensive guide of the more mathematical aspects of the subject. Results and methods of the past 15 years are reviewed. The analytical methods employed are non-perturbative and, for the larger part, mathematically rigorous. Most articles are review articles surveying certain important developments in quantum field theory and guiding the reader towards the original literature. The theory of phase transitions and spontaneous symmetry breaking is reviewed in the first section. The second section discusses the non-perturbative quantization of topological solitons. The third section is devoted to the study of gauge fields. A paper on the triviality of (labda phi) to the power of 4 - theory in four and more dimensions is found in the fourth section, while the fifth contains two articles on "random geometry". The sixth and final part addresses topics in low-dimensional quantum field theory, including braid statistics, two-dimensional conformal field theory and an application to condensed matter theory. The volume begins with a comprehensive introduction by Jurg Frohlich.
A sequel to the well received book, Quantum Mechanics by T Y Wu, this book carries on where the earlier volume ends. This present volume follows the generally pedagogic style of Quantum Mechanics. The scope ranges from relativistic quantum mechanics to an introduction to quantum field theory with quantum electrodynamics as the basic example and ends with an exposition of important issues related to the standard model. The book presents the subject in basic and easy-to-grasp notions which will enhance the purpose of this book as a useful textbook in the area of relativistic quantum mechanics and quantum electrodynamics.
A sequel to the well received book, Quantum Mechanics by T Y Wu, this book carries on where the earlier volume ends. This present volume follows the generally pedagogic style of Quantum Mechanics. The scope ranges from relativistic quantum mechanics to an introduction to quantum field theory with quantum electrodynamics as the basic example and ends with an exposition of important issues related to the standard model. The book presents the subject in basic and easy-to-grasp notions which will enhance the purpose of this book as a useful textbook in the area of relativistic quantum mechanics and quantum electrodynamics.
Gravity, a Geometrical Course presents general relativity (GR) in a systematic and exhaustive way, covering three aspects that are homogenized into a single texture: i) the mathematical, geometrical foundations, exposed in a self consistent contemporary formalism, ii) the main physical, astrophysical and cosmological applications, updated to the issues of contemporary research and observations, with glimpses on supergravity and superstring theory, iii) the historical development of scientific ideas underlying both the birth of general relativity and its subsequent evolution. The book is divided in two volumes. Volume Two is covers black holes, cosmology and an introduction to supergravity. The aim of this volume is two-fold. It completes the presentation of GR and it introduces the reader to theory of gravitation beyond GR, which is supergravity. Starting with a short history of the black hole concept, the book covers the Kruskal extension of the Schwarzschild metric, the causal structures of Lorentzian manifolds, Penrose diagrams and a detailed analysis of the Kerr-Newman metric. An extensive historical account of the development of modern cosmology is followed by a detailed presentation of its mathematical structure, including non-isotropic cosmologies and billiards, de Sitter space and inflationary scenarios, perturbation theory and anisotropies of the Cosmic Microwave Background. The last three chapters deal with the mathematical and conceptual foundations of supergravity in the frame of free differential algebras. Branes are presented both as classical solutions of the bulk theory and as world-volume gauge theories with particular emphasis on the geometrical interpretation of kappa-supersymmetry. The rich bestiary of special geometries underlying supergravity lagrangians is presented, followed by a chapter providing glances on the equally rich collection of special solutions of supergravity. Pietro Fre is Professor of Theoretical Physics at the University of Torino, Italy and is currently serving as Scientific Counsellor of the Italian Embassy in Moscow. His scientific passion lies in supergravity and all allied topics, since the inception of the field, in 1976. He was professor at SISSA, worked in the USA and at CERN. He has taught General Relativity for 15 years. He has previously two scientific monographs, Supergravity and Superstrings and The N=2 Wonderland, He is also the author of a popular science book on cosmology and two novels, in Italian."
An introduction and comprehensive survey of the main issues in
mesosocopic physics. Topics covered include quantum Hall effects,
transport through quantum wires and dots, coherence in mesoscopic
systems, spintronics, disordered systems, and solid state quantum
computation. Some contributions are dedicated to the connections
between nanoscience and biophysics and quantum optics.
Quantum phenomena are ubiquitous in complex molecular systems - as revealed by many experimental observations based upon ultrafast spectroscopic techniques - and yet remain a challenge for theoretical analysis. The present volume, based on a May 2005 workshop, examines and reviews the state-of-the-art in the development of new theoretical and computational methods to interpret the observed phenomena. Emphasis is on complex molecular processes involving surfaces, clusters, solute-solvent systems, materials, and biological systems. The research summarized in this book shows that much can be done to explain phenomena in systems excited by light or through atomic interactions. It demonstrates how to tackle the multidimensional dynamics arising from the atomic structure of a complex system, and addresses phenomena in condensed phases as well as phenomena at surfaces. The chapters on new methodological developments cover both phenomena in isolated systems, and phenomena which involve the statistical effects of an environment, such as fluctuations and dissipation. The methodology part explores new rigorous ways to formulate mixed quantum-classical dynamics in many dimensions, along with new ways to solve a many-atom Schroedinger equation, or the Liouville-von Neumann equation for the density operator, using trajectories and ideas related to hydrodynamics. Part I treats applications to complex molecular systems, and Part II covers new theoretical and computational methods
These lecture notes deal with the problem of collective coordinates in many-body systems, which are treated as gauge systems in (0+1) dimensions. The resulting classical Dirac brackets are discussed, as well as the structure of the quantal space of wavefunctions. Emphasis is made on the application of the BRST formalism. Several systems displaying an approximate breakdown of symmetries are treated. Many-body physicists may find attractive both a rigorous formulation of the problem of collective coordinates and being introduced to the BRST formalism, which has become a fundamental tool in gauge theories. Field-theorists may find illuminating the applications to simpler mechanical examples. The notes are self-contained. In particular, they do not require a previous knowledge of either the BRST formalism or of collective transformations.
These lecture notes deal with the problem of collective coordinates in many-body systems, which are treated as gauge systems in (0+1) dimensions. The resulting classical Dirac brackets are discussed, as well as the structure of the quantal space of wavefunctions. Emphasis is made on the application of the BRST formalism. Several systems displaying an approximate breakdown of symmetries are treated. Many-body physicists may find attractive both a rigorous formulation of the problem of collective coordinates and being introduced to the BRST formalism, which has become a fundamental tool in gauge theories. Field-theorists may find illuminating the applications to simpler mechanical examples. The notes are self-contained. In particular, they do not require a previous knowledge of either the BRST formalism or of collective transformations.
The nature of dark matter remains one of the preeminent mysteries in physics and cosmology. It appears to require the existence of new particles whose interactions to ordinary matter are extraordinarily feeble. One well-motivated candidate is the axion, an extraordinarily light neutral particle that may possibly be detected by looking for their conversion to detectable microwaves in the presence of a strong magnetic field. This has led to a number of experimental searches that are beginning to probe plausible axion model space and may discover the axion in the near future. These proceedings discuss the challenges of designing and operating tunable resonant cavities and detectors at ultralow temperatures. The topics discussed here have potential application far beyond the field of dark matter detection and may be applied to resonant cavities for accelerators as well as designing superconducting detectors for quantum information and computing applications. This work is intended for graduate students and researchers interested in learning the unique requirements for designing and operating microwave cavities and detectors for direct axion searches and to introduce several proposed experimental concepts that are still in the prototype stage.
Quantum information science is a rapidly developing field that not only promises a revolution in computer sciences but also touches deeply the very foundations of quantum physics. This book consists of a set of lectures by leading experts in the field that bridges the gap between standard textbook material and the research literature, thus providing the ne- cessary background for postgraduate students and non-specialist researchers wishing to familiarize themselves with the subject thoroughly and at a high level. This volume is ideally suited as a course book for postgraduate students, and lecturers will find in it a large choice of material for bringing their courses up to date.
This subject is developed for readers with a fairly good knowledge of classical mechanics, electrodynamics and theory of relativity. The mathematics of linear vector spaces and matrices required is included as text and appendices. All principles and techniques are explained with illustrative applications. A Hilbert space formulation of the basic principles and the equations of motion are adopted at the outset. The treatment of linear vector spaces, matrices, angular momentum, relativistic wave equations, quantum field theory and the interpretational problem, is given in a more detailed way than in most books on quantum mechanics. Topics covered include Clebsch-Gordon and Racah coefficients, 9-j symbols and spherical tensors, the Klein-Gordon and the Weyl equations, Feynman's path-integral formalism, Feynman diagrams, Normal Products and Wick's Theorem, the EPR paradox, Hidden-variables theories and Bell's inequality. A number of problems are included with a view to supplementing the text. The present edition includes boundary value problems, representation theory, Fermi-Gas Model of the nuclei, Imaginary-mass Klein-Gordon equation, covariant and contravariant vectors, explanations of the EPR paradox and Einstein's concept of locality versus determinism.
A definitive historical study of this scientific work and the human struggles that accompanied it from the very beginning. Drawing on such materials as the resources of the Archives for the History of Quantum Physics, the Niels Bohr Archives, and the archives and scientific correspondence of the principal quantum physicists, as well as Jagdish Mehras personal discussions over many years with most of the architects of quantum theory, the authors have written a rigorous scientific history in a deeply human context. This multivolume work presents a rich account of an intellectual triumph: a unique analysis of the creative scientific process, wrapped in the story of a great human enterprise. Its lessons will be an aid to those working in the sciences and humanities alike.
Aimed at senior undergraduate and first-year graduate students in
departments of physics and astronomy, this textbook gives a
systematic treatment of atomic and molecular structure and spectra,
together with the effect of weak and strong external
electromagnetic fields.
This thesis demonstrates a full Mach-Zehnder interferometer with interacting Bose-Einstein condensates confined on an atom chip. It relies on the coherent manipulation of atoms trapped in a magnetic double-well potential, for which the author developed a novel type of beam splitter. Particle-wave duality enables the construction of interferometers for matter waves, which complement optical interferometers in precision measurement devices, both for technological applications and fundamental tests. This requires the development of atom-optics analogues to beam splitters, phase shifters and recombiners. Particle interactions in the Bose-Einstein condensate lead to a nonlinearity, absent in photon optics. This is exploited to generate a non-classical state with reduced atom-number fluctuations inside the interferometer. This state is then used to study the interaction-induced dephasing of the quantum superposition. The resulting coherence times are found to be a factor of three longer than expected for coherent states, highlighting the potential of entanglement as a resource for quantum-enhanced metrology.
This monograph, unique in the literature, is the first to develop a mathematical theory of gravitational lensing. The theory applies to any finite number of deflector planes and highlights the distinctions between single and multiple plane lensing. Introductory material in Parts I and II present historical highlights and the astrophysical aspects of the subject. Among the lensing topics discussed are multiple quasars, giant luminous arcs, Einstein rings, the detection of dark matter and planets with lensing, time delays and the age of the universe (Hubble's constant), microlensing of stars and quasars. The main part of the book---Part III---employs the ideas and results of singularity theory to put gravitational lensing on a rigorous mathematical foundation and solve certain key lensing problems. Results are published here for the first time. Mathematical topics discussed: Morse theory, Whitney singularity theory, Thom catastrophe theory, Mather stability theory, Arnold singularity theory, and the Euler characteristic via projectivized rotation numbers. These tools are applied to the study of stable lens systems, local and global geometry of caustics, caustic metamorphoses, multiple lensed images, lensed image magnification, magnification cross sections, and lensing by singular and nonsingular deflectors. Examples, illustrations, bibliography and index make this a suitable text for an undergraduate/graduate course, seminar, or independent thesis project on gravitational lensing. The book is also an excellent reference text for professional mathematicians, mathematical physicists, astrophysicists, and physicists.
Based on class-tested notes, this text offers an introduction to Conformal Field Theory with a special emphasis on computational techniques of relevance for String Theory. It introduces Conformal Field Theory at a basic level, Kac-Moody algebras, one-loop partition functions, Superconformal Field Theories, Gepner Models and Boundary Conformal Field Theory. Eventually, the concept of orientifold constructions is explained in detail for the example of the bosonic string. In providing many detailed CFT calculations, this book is ideal for students and scientists intending to become acquainted with CFT techniques relevant for string theory but also for students and non-specialists from related fields.
Theoretical physicists allover the world are acquainted with Lande's celebrated computation of the g factor or splitting factor or, more precisely, the magne togyric factor. The so-called anomalous Zeeman effect had intrigued, if not vexed, some of the most distinguished physicists of that time, such as Bohr, Sommerfeld, Pauli, and others. Lande realized that this recalcitrant effect was inseparable from the multiplet line structure - a breakthrough in understanding which he achieved in 1922 at the age of thirty four. It was in the same year that Lande discovered the interval rule for the separation of multiplet sublevels, a significant result that holds in all cases of Russell-Saunders coupling and renders comparatively easy the empirical analysis of spectral multiplets. In the twenties, Lande succeeded in constructing some original concepts of axiomatic thermodynamics by employing Caratheodory's somewhat esoteric approach as his guiding concept. Published in the Handbuch der Physik, his comprehensive treatise, evincing several novel ideas, has become a classic. Lande, Sommerfeld's student though never a true disciple, published two monographs on quantum mechanics that are remarkable for their content and exposition. In this connection it may be apposite to stress that Lande had sub scribed for many years to the (infelicitously named) Copenhagen interpretation."
It has been said that String theorists talk to string theorists and everyone else wonders what they are saying'. This book will be a great help to those researchers who are challenged by modern quantum field theory. Quantum field theory experienced a renaissance in the late 1960s. Here, participants in the Les Houches sessions of 1970/75, now key players in quantum field theory and its many impacts, assess developments in their field of interest and provide guidance to young researchers challenged by these developments, but overwhelmed by their complexities. The book is not a textbook on string theory, rather it is a complement to Polchinski's book on string theory. It is a survey of current problems which have their origin in quantum field theory.
The focus of the present work is nonrelativistic and relativistic quantum mechanics with standard applications to the hydrogen atom. The author has aimed at presenting quantum mechanics in a comprehensive yet accessible for mathematicians and other non-physicists. The genesis of quantum mechanics, its applications to basic quantum phenomena, and detailed explanations of the corresponding mathematical methods are presented. The exposition is formalized (whenever possible) on the basis of the coupled Schroedinger, Dirac and Maxwell equations. Aimed at upper graduate and graduate students in mathematical and physical science studies.
Quantum Neural Computation is a graduate level monographic textbook. It presents a comprehensive introduction, both non-technical and technical, into modern quantum neural computation, the science behind the fiction movie Stealth. Classical computing systems perform classical computations (i.e., Boolean operations, such as AND, OR, NOT gates) using devices that can be described classically (e.g., MOSFETs). On the other hand, quantum computing systems perform classical computations using quantum devices (quantum dots), that is devices that can be described only using quantum mechanics. Any information transfer between such computing systems involves a state measurement. This book describes this information transfer at the edge of classical and quantum chaos and turbulence, where mysterious quantum-mechanical linearity meets even more mysterious brain s nonlinear complexity, in order to perform a super high speed and error free computations. This monograph describes a crossroad between quantum field theory, brain science and computational intelligence."
The material collected in this book originated from the author's twenty-five years of teaching for a two-semester, first year graduate course in the University of Michigan. It discusses the physics and analysis of nuclear and electromagnetic interactions. It also introduces the concepts of Quantum Mechanics from the Liouville, rather than the Schroedinger, point of view. This viewpoint is unique, less abstract and lends itself nicely to physical applications. It is highly recommended as a text for graduate courses in Physics, Chemistry and Engineering.
The material collected in this book originated from the author's twenty-five years of teaching for a two-semester, first year graduate course in the University of Michigan. It discusses the physics and analysis of nuclear and electromagnetic interactions. It also introduces the concepts of Quantum Mechanics from the Liouville, rather than the Schroedinger, point of view. This viewpoint is unique, less abstract and lends itself nicely to physical applications. It is highly recommended as a text for graduate courses in Physics, Chemistry and Engineering. |
You may like...
Relativistic Many-Body Theory and…
Lawrence P Horwitz, Rafael I. Arshansky
Paperback
R753
Discovery Miles 7 530
|