0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (70)
  • R250 - R500 (320)
  • R500+ (4,746)
  • -
Status
Format
Author / Contributor
Publisher

Books > Science & Mathematics > Physics > Quantum physics (quantum mechanics)

Nuclear Structure Physics (Hardcover): Amritanshu Shukla, Suresh Kumar Patra Nuclear Structure Physics (Hardcover)
Amritanshu Shukla, Suresh Kumar Patra
R4,530 Discovery Miles 45 300 Ships in 12 - 17 working days

Nuclear structure Physics connects to some of our fundamental questions about the creation of universe and its basic constituents. At the same time, precise knowledge on the subject has lead to develop many important tools of human kind such as proton therapy, radioactive dating etc. This book contains chapters on some of the crucial and trending research topics in nuclear structure, including the nuclei lying on the extremes of spin, isospin and mass. A better theoretical understanding of these topics is important beyond the confines of the nuclear structure community. Additionally, the book will showcase the applicability and success of the different nuclear effective interaction parameters near the drip line, where hints for level reordering have already been seen, and where one can test the isospin-dependence of the interaction. The book offers comprehensive coverage of the most essential topics, including: * Nuclear Structure of Nuclei at or Near Drip-Lines * Synthesis challenges and properties of Superheavy nuclei * Nuclear Structure and Nuclear models - Ab-initio calculations, cluster models, Shell-model/DSM, RMF, Skyrme * Shell Closure, Magicity and other novel features of nuclei at extremes * Structure of Toroidal, Bubble Nuclei, halo and other exotic nuclei These topics are not only very interesting from theoretical nuclear physics perspective but are also quite complimentary for ongoing nuclear physics experimental program worldwide. It is hoped that the book chapters written by experienced and well known researchers/experts will be helpful for the master students, graduate students and researchers and serve as a standard & uptodate research reference book on the topics covered.

Quantum Mechanics - An Introduction for Device Physicists and Electrical Engineers (Paperback, 3rd edition): David Ferry Quantum Mechanics - An Introduction for Device Physicists and Electrical Engineers (Paperback, 3rd edition)
David Ferry
R2,453 Discovery Miles 24 530 Ships in 12 - 17 working days

Quantum Mechanics: An Introduction for Device Physicists and Electrical Engineers, Third Edition provides a complete course in quantum mechanics for students of semiconductor device physics and electrical engineering. It provides the necessary background to quantum theory for those starting work on micro- and nanoelectronic structures and is particularly useful for those beginning work with modern semiconductors devices, lasers, and qubits. This book was developed from a course the author has taught for many years with a style and order of presentation of material specifically designed for this audience. It introduces the main concepts of quantum mechanics which are important in everyday solid-state physics and electronics. Each topic includes examples which have been carefully chosen to draw upon relevant experimental research. It also includes problems with solutions to test understanding of theory. Full updated throughout, the third edition contains the latest developments, experiments, and device concepts, in addition to three fully revised chapters on operators and expectations and spin angular momentum, it contains completely new material on superconducting devices and approaches to quantum computing.

Quantum Mechanics - An Introduction for Device Physicists and Electrical Engineers (Hardcover, 3rd edition): David Ferry Quantum Mechanics - An Introduction for Device Physicists and Electrical Engineers (Hardcover, 3rd edition)
David Ferry
R6,277 Discovery Miles 62 770 Ships in 12 - 17 working days

Quantum Mechanics: An Introduction for Device Physicists and Electrical Engineers, Third Edition provides a complete course in quantum mechanics for students of semiconductor device physics and electrical engineering. It provides the necessary background to quantum theory for those starting work on micro- and nanoelectronic structures and is particularly useful for those beginning work with modern semiconductors devices, lasers, and qubits. This book was developed from a course the author has taught for many years with a style and order of presentation of material specifically designed for this audience. It introduces the main concepts of quantum mechanics which are important in everyday solid-state physics and electronics. Each topic includes examples which have been carefully chosen to draw upon relevant experimental research. It also includes problems with solutions to test understanding of theory. Full updated throughout, the third edition contains the latest developments, experiments, and device concepts, in addition to three fully revised chapters on operators and expectations and spin angular momentum, it contains completely new material on superconducting devices and approaches to quantum computing.

Synchronicity - The Epic Quest to Understand the Quantum Nature of Cause and Effect (Hardcover): Paul Halpern Synchronicity - The Epic Quest to Understand the Quantum Nature of Cause and Effect (Hardcover)
Paul Halpern
R677 Discovery Miles 6 770 Ships in 12 - 17 working days

In Synchronicity Paul Halpern tells the little-known story of the unlikely friendship between the Nobel-prize-winning quantum physicist Wolfgang Pauli and the father of psychoanalysis, Carl Jung. In the 1930s, Pauli and Jung began collaborating on a unified theory of quantum and the mind, the result of which was Jung's synchronicity principle-the idea that events connected by meaning need not be explained by causality. Pauli's work on entanglement theory, which allowed for instantaneous cause and effect relationships, was particularly appealing to Jung, as it seemed to give weight to his controversial theory of a collective unconscious. Casting their relationship within a larger intellectual history of entanglement theory, Halpern poses a question that has mystified physicists and philosophers alike since the times of Aristotle: Is the speed of light finite, as Einstein posited, or is it, as Pauli and the proponents of entanglement theory asserted, variable across time and dimensions? As Halpern works his way through the history of the physics of cause and effect, he shows that this centuries-old debate is not only relevant at the smallest scales of particle physics but also at the largest scales of the cosmos itself.

Operational Procedures Describing Physical Systems (Paperback): Ioan Merches, Marciel Agop Operational Procedures Describing Physical Systems (Paperback)
Ioan Merches, Marciel Agop
R1,412 Discovery Miles 14 120 Ships in 12 - 17 working days

The authors examine topics in modern physics and offer a unitary and original treatment of the fundamental problems of the dynamics of physical systems, as well as a description of the nuclear matter within a framework of general relativity. They show that some physical phenomena studied at two different resolution scales (e.g. microscale, cosmological scale), apparently with no connection between them, become compatible by means of the operational procedures, acting either as some "hidden" symmetries, or harmonic-type mappings. The book is addressed to the students, researchers and university/high school teachers working in the fields of mathematics, physics, and chemistry.

Introduction to Perturbation Theory in Quantum Mechanics (Paperback): Francisco M. Fernandez Introduction to Perturbation Theory in Quantum Mechanics (Paperback)
Francisco M. Fernandez
R1,421 Discovery Miles 14 210 Ships in 12 - 17 working days

Perturbation theory is a powerful tool for solving a wide variety of problems in applied mathematics, a tool particularly useful in quantum mechanics and chemistry. Although most books on these subjects include a section offering an overview of perturbation theory, few, if any, take a practical approach that addresses its actual implementation Introduction to Perturbation Theory in Quantum Mechanics does. It collects into a single source most of the techniques for applying the theory to the solution of particular problems. Concentrating on problems that allow exact analytical solutions of the perturbation equations, the book resorts to numerical results only when necessary to illustrate and complement important features of the theory. The author also compares different methods by applying them to the same models so that readers clearly understand why one technique may be preferred over another. Demonstrating the application of similar techniques in quantum and classical mechanics, Introduction to Perturbation Theory in Quantum Mechanics reveals the underlying mathematics in seemingly different problems. It includes many illustrative examples that facilitate the understanding of theoretical concepts, and provides a source of ideas for many original research projects.

Functional Methods in Quantum Field Theory and Statistical Physics (Paperback): A.N. Vasiliev Functional Methods in Quantum Field Theory and Statistical Physics (Paperback)
A.N. Vasiliev
R1,544 Discovery Miles 15 440 Ships in 12 - 17 working days

Providing a systematic introduction to the techniques which are fundamental to quantum field theory, this book pays special attention to the use of these techniques in a wide variety of areas, including ordinary quantum mechanics, quantum mechanics in the second-quantized formulation, relativistic quantum field theory, Euclidean field theory, quantum statistics at finite temperature, and the classical statistics of nonideal gas and spin systems. The extended chapter on variational methods and functional Legendre transformations contains completely original material.

An Introduction to Gauge Theories (Paperback): Nicola Cabibbo, Luciano Maiani, Omar Benhar An Introduction to Gauge Theories (Paperback)
Nicola Cabibbo, Luciano Maiani, Omar Benhar
R1,426 Discovery Miles 14 260 Ships in 12 - 17 working days

Written by world-leading experts in particle physics, this new book from Luciano Maiani and Omar Benhar, with contributions from the late Nicola Cabibbo, is based on Feynman's path integrals. Key elements of gauge theories are described-Feynman diagrams, gauge-fixing, Faddeev-Popov ghosts-as well as renormalization in Quantum Electrodynamics. Quarks and QCD interactions are introduced. Renormalization group and high momentum behaviour of the coupling constants is discussed in QED and QCD, with asymptotic freedom derived at one-loop. These concepts are related to the Higgs boson and models of grand unification. "... an excellent introduction to the quantum theory of gauge fields and their applications to particle physics. ... It will be an excellent book for the serious student and a good reference for the professional practitioner. Let me add that, scattered through the pages, we can find occasional traces of Nicola Cabibbo's style." -John Iliopoulos, CNRS-Ecole Normale Superieure " ... The volume ends with an illuminating description of the expectation generated by the recent discovery of the Higgs boson, combined with the lack of evidence for super-symmetric particles in the mass range 0.6-1 TeV." -Arturo Menchaca-Rocha, FinstP, Professor of Physics, Mexico's National Autonomous University, Former President of the Mexican Academy of Sciences, Presidential Advisor "...The reader is masterfully guided through the subtleties of the quantum field theory and elementary particle physics from simple examples in Quantum Mechanics to salient details of modern theory." -Mikhail Voloshin, Professor of Physics, University of Minnesota

Helgoland - The Strange and Beautiful Story of Quantum Physics (Paperback): Carlo Rovelli Helgoland - The Strange and Beautiful Story of Quantum Physics (Paperback)
Carlo Rovelli; Translated by Erica Segre, Simon Carnell
R329 R266 Discovery Miles 2 660 Save R63 (19%) Ships in 9 - 15 working days

The instant Sunday Times bestseller -- a beautiful story of rebellion and science 'Popular science has rarely been so good' Prospect 'A triumph. . . We are left in a world that is not disenchanted by science, but even more magical' Financial Times In June 1925, twenty-three-year-old Werner Heisenberg, suffering from hay fever, had retreated to the treeless, wind-battered island of Helgoland in the North Sea in order to think. Walking all night, by dawn he had wrestled with an idea that would transform the whole of science and our very conception of the world. In Helgoland Carlo Rovelli tells the story of the birth of quantum physics and its bright young founders who were to become some of the most famous Nobel winners in science. It is a celebration of youthful rebellion and intellectual revolution. An invitation to a magical place. Here Rovelli illuminates competing interpretations of this science and offers his own original view, describing the world we touch as a fabric woven by relations. Where we, as every other thing around us, exist in our interactions with one another, in a never-ending game of mirrors. A dazzling work from a celebrated scientist and master storyteller, Helgoland transports us to dizzying heights, reminding us of the many pleasures of the life of the mind. Translated by Erica Segre and Simon Carnell Chosen as a Book of the Year by The Times, Financial Times, Sunday Times, Guardian and Prospect

Electroweak Interactions (Paperback): Luciano Maiani Electroweak Interactions (Paperback)
Luciano Maiani
R1,411 Discovery Miles 14 110 Ships in 12 - 17 working days

Get First-Hand Insight from a Contributor to the Standard Model of Particle Physics Written by an award-winning former director-general of CERN and one of the world's leading experts on particle physics, Electroweak Interactions explores the concepts that led to unification of the weak and electromagnetic interactions. It provides the fundamental elements of the theory of compact Lie groups and their representations, enabling a basic understanding of the role of flavor symmetry in particle physics. Understand Conceptual Elements of the Theory of Elementary Particles The book begins with the identification of the weak hadronic current with the isotopic spin current, Yang-Mills theory, and the first electroweak theory of Glashow. It discusses spontaneous breaking of a global symmetry and a local symmetry, covering the Goldstone theorem, Brout-Englert-Higgs mechanism, and the theory of Weinberg and Salam. The author then describes the theory of quarks, quark mixing, the Cabibbo angle, the Glashow-Iliopoulos-Maiani (GIM) mechanism, the theory of Kobayashi and Maskawa, six quark flavors, and CP violation. Delve into Experimental Tests and Unresolved Problems The author goes on to explore some phenomenological topics, such as neutral current interactions of neutrinos and CP violation in the neutral K-meson system. He also highlights how flavor-changing neutral current processes have emerged as probes to reveal the presence of new phenomena at energies not yet accessible with particle accelerators. The book concludes with an explanation of the expected properties of the Higgs boson and the methods adopted for its search. The predictions are also compared with relevant experimental results. View the author's first book in this collection: Relativistic Quantum Mechanics: An Introduction to Relativistic Quantum Fields.

Introduction to Topological Quantum Matter & Quantum Computation (Paperback): Tudor D. Stanescu Introduction to Topological Quantum Matter & Quantum Computation (Paperback)
Tudor D. Stanescu
R1,463 Discovery Miles 14 630 Ships in 12 - 17 working days

What is "topological" about topological quantum states? How many types of topological quantum phases are there? What is a zero-energy Majorana mode, how can it be realized in a solid state system, and how can it be used as a platform for topological quantum computation? What is quantum computation and what makes it different from classical computation? Addressing these and other related questions, Introduction to Topological Quantum Matter & Quantum Computation provides an introduction to and a synthesis of a fascinating and rapidly expanding research field emerging at the crossroads of condensed matter physics, mathematics, and computer science. Providing the big picture, this book is ideal for graduate students and researchers entering this field as it allows for the fruitful transfer of paradigms and ideas amongst different areas, and includes many specific examples to help the reader understand abstract and sometimes challenging concepts. It explores the topological quantum world beyond the well-known topological insulators and superconductors and emphasizes the deep connections with quantum computation. It addresses key principles behind the classification of topological quantum phases and relevant mathematical concepts and discusses models of interacting and noninteracting topological systems, such as the torric code and the p-wave superconductor. The book also covers the basic properties of anyons, and aspects concerning the realization of topological states in solid state structures and cold atom systems. Quantum computation is also presented using a broad perspective, which includes fundamental aspects of quantum mechanics, such as Bell's theorem, basic concepts in the theory of computation, such as computational models and computational complexity, examples of quantum algorithms, and elements of classical and quantum information theory.

Quantum Optomechanics (Paperback): Warwick P. Bowen, Gerard J. Milburn Quantum Optomechanics (Paperback)
Warwick P. Bowen, Gerard J. Milburn
R1,568 Discovery Miles 15 680 Ships in 12 - 17 working days

Written by leading experimentalist Warwick P. Bowen and prominent theoretician Gerard J. Milburn, Quantum Optomechanics discusses modern developments in this novel field from experimental and theoretical standpoints. The authors share their insight on a range of important topics, including optomechanical cooling and entanglement; quantum limits on measurement precision and how to overcome them via back-action evading measurements; feedback control; single photon and nonlinear optomechanics; optomechanical synchronization; coupling of optomechanical systems to microwave circuits and two-level systems, such as atoms and superconducting qubits; and optomechanical tests of gravitational decoherence. The book first introduces the basic physics of quantum harmonic oscillators and their interactions with their environment. It next discusses the radiation pressure interaction between light and matter, deriving common Hamiltonians used in quantum optomechanics. It then focuses on the linearized regime of quantum optomechanics before exploring scenarios where the simple linearized picture of quantum optomechanics no longer holds. The authors move on to hybrid optomechanical systems in which the canonical quantum optomechanical system is coupled to another quantum object. They explain how an alternative form of a hybrid optomechanical system leads to the phenomenon of synchronization. They also consider the impact of quantum optomechanics on tests of gravitational physics.

On Theories - Logical Empiricism and the Methodology of Modern Physics (Hardcover): William Demopoulos On Theories - Logical Empiricism and the Methodology of Modern Physics (Hardcover)
William Demopoulos; Edited by Michael Friedman
R885 Discovery Miles 8 850 Ships in 12 - 17 working days

A renowned philosopher's final work, illuminating how the logical empiricist tradition has failed to appreciate the role of actual experiments in forming its philosophy of science. The logical empiricist treatment of physics dominated twentieth-century philosophy of science. But the logical empiricist tradition, for all it accomplished, does not do justice to the way in which empirical evidence functions in modern physics. In his final work, the late philosopher of science William Demopoulos contends that philosophers have failed to provide an adequate epistemology of science because they have failed to appreciate the tightly woven character of theory and evidence. As a consequence, theory comes apart from evidence. This trouble is nowhere more evident than in theorizing about particle and quantum physics. Arguing that we must consider actual experiments as they have unfolded across history, Demopoulos provides a new epistemology of theories and evidence, albeit one that stands on the shoulders of giants. On Theories finds clarity in Isaac Newton's suspicion of mere "hypotheses." Newton's methodology lies in the background of Jean Perrin's experimental investigations of molecular reality and of the subatomic investigations of J. J. Thomson and Robert Millikan. Demopoulos extends this account to offer novel insights into the distinctive nature of quantum reality, where a logico-mathematical reconstruction of Bohrian complementarity meets John Stewart Bell's empirical analysis of Einstein's "local realism." On Theories ultimately provides a new interpretation of quantum probabilities as themselves objectively representing empirical reality.

New Aspects of Quantum Electrodynamics (Hardcover, 1st ed. 2017): Akitomo Tachibana New Aspects of Quantum Electrodynamics (Hardcover, 1st ed. 2017)
Akitomo Tachibana
R4,121 Discovery Miles 41 210 Ships in 12 - 17 working days

This book presents new aspects of quantum electrodynamics (QED), a quantum theory of photons with electrons, from basic physics to physical chemistry with mathematical rigor. Topics covered include spin dynamics, chemical reactivity, the dual Cauchy problem, and more. Readers interested in modern applications of quantum field theory in nano-, bio-, and open systems will enjoy learning how the up-to-date quantum theory of radiation with matter works in the world of QED. In particular, chemical ideas restricted now to nonrelativistic quantum theory are shown to be unified and extended to relativistic quantum field theory that is basic to particle physics and cosmology: realization of the new-generation quantum theory. Readers are assumed to have a background equivalent to an undergraduate student's elementary knowledge in electromagnetism, quantum mechanics, chemistry, and mathematics.

The Quantum Physics of Atomic Frequency Standards - Recent Developments (Paperback): Jacques Vanier, Cipriana Tomescu The Quantum Physics of Atomic Frequency Standards - Recent Developments (Paperback)
Jacques Vanier, Cipriana Tomescu
R1,479 Discovery Miles 14 790 Ships in 12 - 17 working days

Up-to-Date Coverage of Stable and Accurate Frequency Standards The Quantum Physics of Atomic Frequency Standards: Recent Developments covers advances in atomic frequency standards (atomic clocks) from the last several decades. It explains the use of various techniques, such as laser optical pumping, coherent population trapping, laser cooling, and electromagnetic and optical trapping, in the implementation of classical microwave and optical atomic frequency standards. The book first discusses improvements to conventional atomic frequency standards, highlighting the main limitations of those frequency standards and the physical basis of the limitations. It then describes how advances in the theory and applications of atomic physics have opened new avenues in frequency standards. The authors go on to explore the research and development of new microwave and optical frequency standards before presenting the results in frequency stability and accuracy achieved with these new frequency standards. They also illustrate the application of atomic clocks in metrology, telecommunications, navigation, and other areas and give some insight into future work. Building on the success of the previous two volumes, this up-to-date, in-depth book examines the vast improvements to atomic clocks that have occurred in the last 25 years. The improved stability and accuracy enable the verification of physical concepts used in fundamental theories, such as relativity, as well as the stability of fundamental constants intrinsic to those theories.

How to Be a Quantum Mechanic (Hardcover): Charles G. Wohl How to Be a Quantum Mechanic (Hardcover)
Charles G. Wohl
R3,501 Discovery Miles 35 010 Ships in 12 - 17 working days

- Covers both continuum differential equation approach and matrix algebra. - Refined lecture notes, tested on students for over 30 years.

Electroweak Baryogenesis and Its Phenomenology (Hardcover, 1st ed. 2018): Kaori Fuyuto Electroweak Baryogenesis and Its Phenomenology (Hardcover, 1st ed. 2018)
Kaori Fuyuto
R2,886 Discovery Miles 28 860 Ships in 10 - 15 working days

This thesis focuses on one of the mechanisms for solving the baryon asymmetry of the Universe (BAU) which is a long-standing open question in both particle physics and cosmophysics. Electroweak baryogenesis (EWBG) is one attractive hypothetical scenario to solve this mystery because it can be verified by collider experiments. The author aims to clarify the possibility of EWBG, and to show its verifiability using the Higgs physics and electric dipole moments (EDMs) of an electron, neutron, and proton. The thesis begins with a review of the BAU and EWBG. Subsequently, the possibility of EWBG in one effective model is discussed, which can be applied to some motivated physics beyond the Standard Model. Numerical analyses of electroweak phase transition and sphaleron solution are presented, and the closed time path formalism is also explained to estimate the BAU. After essential calculations for investigation of the possibility of EWBG, the relationship between the BAU and EDMs is described. Through the discussion of the result, it is concluded that both EDMs and the Higgs physics verify the scenario completely. The whole discussion in this thesis causes us to accept the current situation that is ripe for verification of EWBG.

V.A. Fock - Selected Works - Quantum Mechanics and Quantum Field Theory (Paperback): L. D. Faddeev, L. a. Khalfin, I.V. Komarov V.A. Fock - Selected Works - Quantum Mechanics and Quantum Field Theory (Paperback)
L. D. Faddeev, L. a. Khalfin, I.V. Komarov
R1,903 Discovery Miles 19 030 Ships in 12 - 17 working days

In the period between the birth of quantum mechanics and the late 1950s, V.A. Fock wrote papers that are now deemed classics. In his works on theoretical physics, Fock not only skillfully applied advanced analytical and algebraic methods, but also systematically created new mathematical tools when existing approaches proved insufficient. This collection of Fock's papers published in various sources between 1923 and 1959 in Russian, German, French, and English. These papers explore some of the fundamental notions of theoretical quantum physics, such as the Hartree-Fock method, Fock space, the Fock symmetry of the hydrogen atom, and the Fock functional method. They also present Fock's views on the interpretation of quantum mechanics and the fundamental significance of approximate methods in theoretical physics. V.A. Fock was a key contributor to one of the most exciting periods of development in 20th-century physics, and this book conveys the essence of that time. The seminal works presented in this book are a helpful reference for any student or researcher in theoretical and mathematical physics, especially those specializing in quantum mechanics and quantum field theory.

Practical Quantum Electrodynamics (Paperback): Douglas M. Gingrich Practical Quantum Electrodynamics (Paperback)
Douglas M. Gingrich
R1,871 Discovery Miles 18 710 Ships in 12 - 17 working days

Taking a heuristic approach to relativistic quantum mechanics, Practical Quantum Electrodynamics provides a complete introduction to the theory, methodologies, and calculations used for explaining the physical interaction of charged particles. This book combines the principles of relativity and quantum theory necessary for performing the calculations of the electromagnetic scattering of electrons and positrons and the emission and absorption of photons. Beginning with an introduction of the wave equations for spin-0 and spin-1/2 particles, the author compares and contrasts the relativistic and spin effects for both types of particles. He emphasizes how the relativistic treatment of quantum mechanics and the spin-1/2 degree of freedom are necessary to describe electromagnetic interactions involving electron scattering and points out the shortfalls of the wave-equation approach to relativistic quantum mechanics. Developing the Feynman rules for quantum electrodynamics by example, the book offers an intuitive, hands-on approach for performing fundamental calculations. It also illustrates how to perform calculations that can be related to experiments such as diagrams, lifetimes, and cross sections. Practical Quantum Electrodynamics builds a strong foundation for further studies and research in theoretical and particle physics, particularly relativistic quantum field theory or nonrelativistic many-body theory.

Supersymmetry In Quantum and Classical Mechanics (Paperback): Bijan Kumar Bagchi Supersymmetry In Quantum and Classical Mechanics (Paperback)
Bijan Kumar Bagchi
R1,854 Discovery Miles 18 540 Ships in 12 - 17 working days

Following Witten's remarkable discovery of the quantum mechanical scheme in which all the salient features of supersymmetry are embedded, SCQM (supersymmetric classical and quantum mechanics) has become a separate area of research . In recent years, progress in this field has been dramatic and the literature continues to grow. Until now, no book has offered an overview of the subject with enough detail to allow readers to become rapidly familiar with its key ideas and methods. Supersymmetry in Classical and Quantum Mechanics offers that overview and summarizes the major developments of the last 15 years. It provides both an up-to-date review of the literature and a detailed exposition of the underlying SCQM principles. For those just beginning in the field, the author presents step-by-step details of most of the computations. For more experienced readers, the treatment includes systematic analyses of more advanced topics, such as quasi- and conditional solvability and the role of supersymmetry in nonlinear systems.

Quasi-Exactly Solvable Models in Quantum Mechanics (Paperback): A.G. Ushveridze Quasi-Exactly Solvable Models in Quantum Mechanics (Paperback)
A.G. Ushveridze
R1,889 Discovery Miles 18 890 Ships in 12 - 17 working days

Exactly solvable models, that is, models with explicitly and completely diagonalizable Hamiltonians are too few in number and insufficiently diverse to meet the requirements of modern quantum physics. Quasi-exactly solvable (QES) models (whose Hamiltonians admit an explicit diagonalization only for some limited segments of the spectrum) provide a practical way forward. Although QES models are a recent discovery, the results are already numerous. Collecting the results of QES models in a unified and accessible form, Quasi-Exactly Solvable Models in Quantum Mechanics provides an invaluable resource for physicists using quantum mechanics and applied mathematicians dealing with linear differential equations. By generalizing from one-dimensional QES models, the expert author constructs the general theory of QES problems in quantum mechanics. He describes the connections between QES models and completely integrable theories of magnetic chains, determines the spectra of QES Schroedinger equations using the Bethe-Iansatz solution of the Gaudin model, discusses hidden symmetry properties of QES Hamiltonians, and explains various Lie algebraic and analytic approaches to the problem of quasi-exact solubility in quantum mechanics. Because the applications of QES models are very wide, such as, for investigating non-perturbative phenomena or as a good approximation to exactly non-solvable problems, researchers in quantum mechanics-related fields cannot afford to be unaware of the possibilities of QES models.

Continuous Quantum Measurements and Path Integrals (Paperback): M.B. Mensky Continuous Quantum Measurements and Path Integrals (Paperback)
M.B. Mensky
R1,849 Discovery Miles 18 490 Ships in 12 - 17 working days

Advances in technology are taking the accuracy of macroscopic as well as microscopic measurements close to the quantum limit, for example, in the attempts to detect gravitational waves. Interest in continuous quantum measurements has therefore grown considerably in recent years. Continuous Quantum Measurements and Path Integrals examines these measurements using Feynman path integrals. The path integral theory is developed to provide formulae for concrete physical effects. The main conclusion drawn from the theory is that an uncertainty principle exists for processes, in addition to the familiar one for states. This implies that a continuous measurement has an optimal accuracy-a balance between inefficient error and large quantum fluctuations (quantum noise). A well-known expert in the field, the author concentrates on the physical and conceptual side of the subject rather than the mathematical.

Quantum Theory without Reduction, (Paperback): Cini Quantum Theory without Reduction, (Paperback)
Cini
R1,846 Discovery Miles 18 460 Ships in 12 - 17 working days

Quantum theory offers a strange, and perhaps unique, case in the history of science. Although research into its roots has provided important results in recent years, the debate goes on. Some theorists argue that quantum theory is weakened by the inclusion of the so called "reduction of the state vector" in its foundations. Quantum Theory without Reduction presents arguments in favor of quantum theory as a consistent and complete theory without this reduction and as a theory capable of explaining all known features of the measurement problem. This collection of invited contributions defines and explores different aspects of this issue, bringing an old debate into a new perspective and leading to a more satisfying consensus about quantum theory. The book will be of interest to researchers in theoretical physics and mathematical physics involved in the foundations of quantum theory. Scientists, engineers, and philosophers interested in the conceptual problems of quantum theory will also find this work stimulating.

Symmetries and Symmetry Breaking in Field Theory (Paperback): Parthasarathi Mitra Symmetries and Symmetry Breaking in Field Theory (Paperback)
Parthasarathi Mitra
R1,836 Discovery Miles 18 360 Ships in 12 - 17 working days

Many courses on modern quantum field theory focus on the formulation and application of field theory, leaving topics related to symmetry underdeveloped. This leads to students often having an incomplete understanding of symmetries. Filling this gap, Symmetries and Symmetry Breaking in Field Theory sheds light on various aspects of symmetry in field theory. The book presents a broad selection of important topics, including constraint theory, generalized Pauli-Villars regularization, the measure approach to anomalies, zeta function regularization, and anomalous gauge theories. The author explains how some classical symmetries are broken by anomalies and how other symmetries of the theory are spontaneously broken. He discusses all of the ideas in as simple a way as possible.

Basics of Quantum Electrodynamics (Paperback): Ioan Merches, Dorian Tatomir, Roxana E. Lupu Basics of Quantum Electrodynamics (Paperback)
Ioan Merches, Dorian Tatomir, Roxana E. Lupu
R1,870 Discovery Miles 18 700 Ships in 12 - 17 working days

Quantum electrodynamics (QED) is the branch of relativistic quantum field theory that deals specifically with the interactions between charged particles. It is widely used to solve problems in many areas of physics, such as elementary particles, atomic and molecular systems, and solid state physics. This accessible text, Basics of Quantum Electrodynamics, supplies a solid foundation in this dynamic area of physics, making a direct connection to the concepts of quantum mechanics familiar to the advanced undergraduate student. Chapters cover the general theory of free fields and the quantization of the scalar, electromagnetic, and spinorial fields, which prepares readers for understanding field interactions. The authors describe the general theory of field interactions, introducing the scattering matrix and the Feynman-Dyson graphs. They then discuss divergence-free second-order processes, such as Compton and Moller scattering, followed by divergent second-order processes, which cover vacuum polarization and mass and charge renormalization. Providing a modern, informative textbook, this volume illustrates the intimate connection between quantum mechanics and QED in two basic steps: the quantization of free fields, followed by the theory of their interactions. The text contains solved problems to facilitate the application of the theory, as well as a useful appendix on the theory of distributions. The step-by-step description of the quantization of various fields and the clear presentation of the most important interaction processes in QED make this textbook a useful guide for those studying physics at both the graduate and undergraduate level, as well as a reference for teachers and researchers in the field.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Quantum Mechanics - Two Vol Set
S. Rajasekar, R. Velusamy Hardcover R4,709 Discovery Miles 47 090
On the Origin of the Strings, Dark…
Ray R Eshraghi Hardcover R1,798 R1,407 Discovery Miles 14 070
Handbook of Relativistic Quantum…
Wenjian Liu Hardcover R17,793 Discovery Miles 177 930
Einstein's Greatest Mistake - A…
David Bodanis Paperback R420 R348 Discovery Miles 3 480
Elementary Particle Physics - An…
Andrew J. Larkoski Hardcover R1,627 Discovery Miles 16 270
The Soul Of Genius - Marie Curie, Albert…
Jeffrey Orens Paperback R268 Discovery Miles 2 680
Modern Quantum Mechanics
J.J. Sakurai, Jim Napolitano Hardcover R1,891 Discovery Miles 18 910
Quantum Mechanics
V K Thankappan Hardcover R1,530 Discovery Miles 15 300
Existential Physics - A Scientist’s…
Sabine Hossenfelder Paperback R249 Discovery Miles 2 490
How the Hippies Saved Physics - Science…
David Kaiser Paperback R528 R439 Discovery Miles 4 390

 

Partners