|
Books > Science & Mathematics > Physics > Quantum physics (quantum mechanics)
The concepts of the Electron Statistics (ES) and the ES dependent
electronic properties are basic pillars in semiconductor
electronics and this first-of-its-kind book deals with the said
concepts in doping superlattices (SLs), quantum well, quantum wire
and quantum dot SLs, effective mass SLs, SLs with graded interfaces
and Fibonacci SLs under different physical conditions respectively.
The influences of intense radiation and strong electric fields
under said concepts have been considered together with the heavily
doped SLs in this context on the basis of newly formulated the
electron energy spectra in all the cases. We have suggested
experimental determinations of the Einstein relation for the
Diffusivity-Mobility ratio, the Debye screening length, Elastic
Constants and the content of this book finds 25 different
applications in the arena of nanoscience and nanotechnology.This
book contains hundred open research problems which form the
integral part of the text and are useful for both PhD aspirants and
researchers. It is written for post graduate students of various
departments of different academic organizations, engineers and
professionals in the fields of solid state electronics, materials
science, solid state sciences, nano-science, nanotechnology and
nano materials in general.
Quantum computing is radically different from the conventional
approach of transforming bits strings from one set of 0's and 1's
to another. With quantum computing, everything changes. The physics
that we use to understand bits of information and the devices that
manipulate them are totally different. The way in which we build
such devices is different, requiring new materials, new design
rules and new processor architectures. Finally, the way we program
these systems is entirely different. Quantum engineering is a
revolutionary approach to quantum technology. It encompasses both
fundamental physics and the broad engineering skill-set necessary
to meet the practical challenges of the future. The proposed book
will cover the high-quality reviewed book chapters on original
research & innovations and compelling insights in Quantum
Computing and Engineering. Data scientists, Engineers, Industry,
researchers and students working in the field of quantum computing
and its allied research will benefit greatly from this publication.
This introduction to quantum field theory (QFT) is written by a
physical chemist for physical chemists, chemical physicists, and
other non-physicists with knowledge of quantum theory but who want
to explore ways in which they might use the power of QFT in their
investigations. This book starts where many graduate courses in
quantum theory that are offered to chemistry students leave off and
first develops some of the necessary tools, such as Fock algebra,
which is applied to solving the quantum oscillator problem. Then it
is used to develop the theory of coherent states, time-dependent
perturbation theory, and the treatment of bosons and fermions. With
this background, the QFT of a perfect gas is derived and a
connection to thermodynamics is demonstrated. Application to
imperfect gases provides a new approach to modelling gas-liquid
phase transitions. The book concludes with photons and their
interaction with molecular ensembles, and brings us to full circle
by deriving the blackbody radiation law, which started it all. The
power of the QFT methodology and the breadth of its applications
should fascinate the reader as it has the author.
Quantum technology has arrived as one of the most important new
topics of research, as it is the newest way to create computing
power, harness secure communications, and use sensitive measurement
methods that surpass the capabilities of modern supercomputers. If
successfully developed, quantum computers and technology will be
able to perform algorithms at impressively quick rates and solve
problems that were previously deemed impossible. This technology
will disrupt what is already known about computing and will be able
to reach new heights, speeds, and problem-solving capabilities not
yet seen. Beyond its inherent benefits comes the fact that quantum
technology will create improvements in many everyday gadgets as
well, spanning many industries. The Research Anthology on
Advancements in Quantum Technology presents the latest discoveries
in quantum technology itself along with providing its essential
uses, applications, and technologies that will impact computing in
modern times and far into the future. Along with this overview
comes a look at quantum technology in many different fields such as
healthcare, communications, aviation, automotive, forecasting, and
more. These industries will be looked at from the perspective of
data analytics, pattern matching, cryptography, algorithms, and
more. This book is essential for computer scientists, engineers,
professionals, researchers, students, and practitioners interested
in the latest information on quantum technology.
Like rocket science or brain surgery, quantum mechanics is
pigeonholed as a daunting and inaccessible topic, which is best
left to an elite or peculiar few. This classification was not
earned without some degree of merit. Depending on perspective;
quantum mechanics is a discipline or philosophy, a convention or
conundrum, an answer or question. Authors have run the gamut from
hand waving to heavy handed in hopes to dispel the common beliefs
about quantum mechanics, but perhaps they continue to promulgate
the stigma. The focus of this particular effort is to give the
reader an introduction, if not at least an appreciation, of the
role that linear algebra techniques play in the practical
application of quantum mechanical methods. It interlaces aspects of
the classical and quantum picture, including a number of both
worked and parallel applications. Students with no prior experience
in quantum mechanics, motivated graduate students, or researchers
in other areas attempting to gain some introduction to quantum
theory will find particular interest in this book.
Classical Mechanics teaches readers how to solve physics problems;
in other words, how to put math and physics together to obtain a
numerical or algebraic result and then interpret these results
physically. These skills are important and will be needed in more
advanced science and engineering courses. However, more important
than developing problem-solving skills and physical-interpretation
skills, the main purpose of this multi-volume series is to survey
the basic concepts of classical mechanics and to provide the reader
with a solid understanding of the foundational content knowledge of
classical mechanics. Classical Mechanics: Conservation Laws and
Rotational Motion covers the conservation of energy and the
conservation of momentum, which are crucial concepts in any physics
course. It also introduces the concepts of center-of-mass and
rotational motion.
The transport of electric charge through most materials is well
described in terms of their electronic band structure. The present
book deals with two cases where the charge transport in a solid is
not described by the simple band structure picture of the solid.
These cases are related to the phenomena of the quantum Hall effect
and superconductivity. Part I of this book deals with the quantum
Hall effect, which is a consequence of the behavior of electrons in
solids when they are constrained to move in two dimensions. Part II
of the present volume describes the behavior of superconductors,
where electrons are bound together in Cooper pairs and travel
through a material without resistance.
Quantum mechanics is an extraordinarily successful scientific
theory. But it is also completely mad. Although the theory quite
obviously works, it leaves us chasing ghosts and phantoms;
particles that are waves and waves that are particles; cats that
are at once both alive and dead; lots of seemingly spooky
goings-on; and a desperate desire to lie down quietly in a darkened
room. The Quantum Cookbook explains why this is. It provides a
unique bridge between popular exposition and formal textbook
presentation, written for curious readers with some background in
physics and sufficient mathematical capability. It aims not to
teach readers how to do quantum mechanics but rather helps them to
understand how to think about quantum mechanics. Each derivation is
presented as a 'recipe' with listed ingredients, including standard
results from the mathematician's toolkit, set out in a series of
easy-to-follow steps. The recipes have been written
sympathetically, for readers who - like the author - will often
struggle to follow the logic of a derivation which misses out steps
that are 'obvious', or which use techniques that readers are
assumed to know.
Optics has been part of scientific enquiry from its beginning and
remains a key element of modern science. This book provides a
concise treatment of physical optics starting with a brief summary
of geometrical optics. Scalar diffraction theory is introduced to
describe wave propagation and diffraction effects and provides the
basis for Fourier methods for treating more complex diffraction
problems. The rest of the book treats the physics underlying some
important instruments for spectral analysis and optical metrology,
reflection and transmission at dielectric surfaces and the
polarization of light. This undergraduate-level text aims to aid
understanding of optical applications in physical, engineering and
life sciences or more advanced topics in modern optics.
The effect which now bears his name, was discovered in 1958 by
Rudolf Moessbauer at the Technical University of Munich. At first,
this appeared to be a phenomenon related to nuclear energy levels
that provided some information about excited state lifetimes and
quantum properties. However, it soon became apparent that
Moessbauer spectroscopy had applications in such diverse fields as
general relativity, solid state physics, chemistry, materials
science, biology, medical physics, archeology and art. It is the
extreme sensitivity of the effect to the atomic environment around
the probe atom as well as the ability to apply the technique to
some interesting and important elements, most notably iron, that is
responsible for the Moessbauer effect's extensive use. The present
volume reviews the historical development of the Moessbauer effect,
the experimental details, the basic physics of hyperfine
interactions and some of the numerous applications of Moessbauer
effect spectroscopy.
Electrostatic forces are essential for the hierarchical structure
of matter: electrons are bound to the atomic nucleus by
electrostatic forces; atoms carry (partial) charges and ions with
opposite charges attract and form (chemical) bonds. Small residual
electrostatic forces between molecules allow them to form
macroscopic structures such as crystals. Electrostatic interactions
explain pseudo-forces used in popular computer programs used to
model properties of atoms, molecules, and proteins. By beginning
with the basics and then diving deeper into the topic, this book
aims to familiarize the reader with electrostatic forces at the
atomic and molecular level.
This book and its prequel (Theories of Matter, Space, and Time:
Classical Theories) grew out of courses that are taught by the
authors on the undergraduate degree program in physics at
Southampton University, UK. The authors aim to guide the full MPhys
undergraduate cohort through some of the trickier areas of
theoretical physics that undergraduates are expected to master. To
move beyond the initial courses in classical mechanics, special
relativity, electromagnetism and quantum theory to more
sophisticated views of these subjects and their interdependence.
This approach keeps the analysis as concise and physical as
possible whilst revealing the key elegance in each subject
discussed.This second book of the pair looks at ideas to the arena
of Quantum Mechanics. First quickly reviewing the basics of quantum
mechanics which should be familiar to the reader from a first
course, it then links the Schrodinger equation to the Principle of
Least Action introducing Feynman's path integral methods. Next, it
presents the relativistic wave equations of Klein, Gordon and
Dirac. Finally, Maxwell's equations of electromagnetism are
converted to a wave equation for photons and make contact with
Quantum Electrodynamics (QED) at a first quantized level. Between
the two volumes the authors hope to move a student's understanding
from their first courses to a place where they are ready to embark
on graduate level courses on quantum field theory.
|
You may like...
Body Dressing
Joanne Entwistle, Elizabeth Wilson
Hardcover
R4,073
Discovery Miles 40 730
|