![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Civil engineering, surveying & building > Structural engineering > Soil & rock mechanics
This volume presents selected papers presented during the 4th International Conference on Transportation Geotechnics. The papers address the geotechnical challenges in design, construction, maintenance, monitoring, and upgrading of roads, railways, airfields, and harbor facilities and other ground transportation infrastructure with the goal of providing safe, economic, environmental, reliable and sustainable infrastructures. This volume will be of interest to postgraduate students, academics, researchers, and consultants working in the field of civil and transport infrastructure.
This book represents a significant contribution to the area of earthquake data processing and to the development of region-specific magnitude correlations to create an up-to-date homogeneous earthquake catalogue that is uniform in magnitude scale. The book discusses seismicity analysis and estimation of seismicity parameters of a region at both finer and broader levels using different methodologies. The delineation and characterization of regional seismic source zones which requires reasonable observation and engineering judgement is another subject covered. Considering the complex seismotectonic composition of a region, use of numerous methodologies (DSHA and PSHA) in analyzing the seismic hazard using appropriate instruments such as the logic tree will be elaborated to explicitly account for epistemic uncertainties considering alternative models (for Source model, Mmax estimation and Ground motion prediction equations) to estimate the PGA value at bedrock level. Further, VS30 characterization based on the topographic gradient, to facilitate the development of surface level PGA maps using appropriate amplification factors, is discussed. Evaluation of probabilistic liquefaction potential is also explained in the book. Necessary backgrounds and contexts of the aforementioned topics are elaborated through a case study specific to India which features spatiotemporally varied and complex tectonics. The methodology and outcomes presented in this book will be beneficial to practising engineers and researchers working in the fields of seismology and geotechnical engineering in particular and to society in general.
How does fracking affect our children, grandchildren and future
generations?
This book provides practicing engineers working in the field of design, construction and monitoring of rock structures such as tunnels and slopes with technical information on how to design, how to excavate and how to monitor the structures during their construction. Based on the long-term engineering experiences of the author, field measurements together with back analyses are presented as the most powerful tools in rock engineering practice. One of the purposes of field measurements is to assess the stability of the rock structures during their construction. However, field measurement results are only numbers unless they are quantitatively interpreted, a process in which back analyses play an important role. The author has developed both the concepts of "critical strain" and of the "anisotropic parameter" of rocks, which can make it possible not only to assess the stability of the structures during their construction, but also to verify the validity of design parameters by the back analysis of field measurement results during the constructions. Based on the back analysis results, the design parameters used at a design stage could be modified if necessary. This procedure is called an "Observational method", a concept that is entirely different from that of other structures such as bridges and buildings. It is noted that in general, technical books written for practicing engineers mainly focus on empirical approaches which are based on engineers' experiences. In this book, however, no empirical approaches will be described, instead, all the approaches are based on simple rock mechanics theory. This book is the first to describe an observational method in rock engineering practice, which implies that the potential readers of this book must be practicing engineers working on rock engineering projects.
Surface and Underground Projects is the last volume of the five-volume set Rock Mechanics and Engineering and contains twenty-one chapters from key experts in the following fields: - Slopes; - Tunnels and Caverns; - Mining; - Petroleum Engineering; - Thermo-/Hydro-Mechanics in Gas Storage, Loading and Radioactive Waste Disposal. The five-volume set "Comprehensive Rock Engineering", which was published in 1993, has had an important influence on the development of rock mechanics and rock engineering. Significant and extensive advances and achievements in these fields over the last 20 years now justify the publishing of a comparable, new compilation. Rock Mechanics and Engineering represents a highly prestigious, multi-volume work edited by Professor Xia-Ting Feng, with the editorial advice of Professor John A. Hudson. This new compilation offers an extremely wideranging and comprehensive overview of the state-of-the-art in rock mechanics and rock engineering and is composed of peer-reviewed, dedicated contributions by all the key experts worldwide. Key features of this set are that it provides a systematic, global summary of new developments in rock mechanics and rock engineering practices as well as looking ahead to future developments in the fields. Contributors are worldrenowned experts in the fields of rock mechanics and rock engineering, though younger, talented researchers have also been included. The individual volumes cover an extremely wide array of topics grouped under five overarching themes: Principles (Vol. 1), Laboratory and Field Testing (Vol. 2), Analysis, Modelling and Design (Vol. 3), Excavation, Support and Monitoring (Vol. 4) and Surface and Underground Projects (Vol. 5). This multi-volume work sets a new standard for rock mechanics and engineering compendia and will be the go-to resource for all engineering professionals and academics involved in rock mechanics and engineering for years to come.
Challenges and Innovations in Geotechnics is a collections of papers presented at the Eighth Asian Young Geotechnical Engineering Conference (8AYGEC, Astana, Kazakhstan, 5-7 August 2016), and covers various aspects the areas of soil mechanics and geotechnical engineering. The book contains special and keynote lectures and contributions on a wide range of topics in geotechnical engineering and construction: (1) Laboratory and Field Testing (2) Foundation and Underground Structure (3) Ground Improvement (4) Earthquake and Environment (5) Numerical and Analytical Modeling (6) Advanced Soil Mechanics (7) Historical Sites Challenges and Innovations in Geotechnics was published under the auspices of the ISSMGE TC-305 'Geotechnical Infrastructures for Megacities and New Capitals', and reflects the present and future state of geotechnical engineering. The book will be extremely useful to geoengineers and researchers in the abovementioned areas.
Primarily designed and constructed to resist outwardly directed loads imposed on the foundation of a structure, anchor plates play an important role in the design of structures (including seawalls, transmission towers, tunnels, buried pipelines, and retaining walls). Design and Construction of Soil Anchor Plates focuses on the various theories based on the design and construction techniques of anchor plates in soil mechanics. The focus of this reference is on design methods, theories, and procedures for constructing permanent or temporary ground anchors and anchored systems. Topics include: General Requirements of Vertical Anchor Plates and Design Criteria, Estimation of Ultimate Capacity in Vertical Anchor Plates, General Requirements of Vertical Anchor Plates and Design Criteria, Type and Length of Inclined Anchor Plates, Early Theories on Anchor Plates in Multi-Layers Soil, and Basic Theories on Passive Pressure in Vertical Anchor Plates. With this reference, researchers and designers will find a valuable guide to the various theories, techniques, and equations for anchor design.
Rock Dynamics: Progress and Prospect contains 153 scientific and technical papers presented at the Fourth International Conference on Rock Dynamics and Applications (RocDyn-4, Xuzhou, China, 17-19 August 2022). The two-volume set has 7 sections. Volume 1 includes the first four sections with 6 keynotes and 5 young scholar plenary session papers, and contributions on analysis and theoretical development, and experimental testing and techniques. Volume 2 contains the remaining three sections with 74 papers on numerical modelling and methods, seismic and earthquake engineering, and rock excavation and engineering. Rock Dynamics: Progress and Prospect will serve as a reference on developments in rock dynamics scientific research and on rock dynamics engineering applications. The previous volumes in this series (RocDyn-1, RocDyn-2, and RocDyn-3) are also available via CRC Press.
In the past decades advances have been made in the research and practice on unsaturated soil mechanics. In 2000 the first Asia-Pacific Conferences on Unsaturated Soils was organized in Singapore. Since then, four conferences have been held under the continued support of the Technical Committee on Unsaturated Soils (TC106) of the International Society of Soil Mechanics and Geotechnical Engineering (ISSMGE). The conferences provided an excellent forum for researchers and practitioners in the region and beyond to present the latest developments and to exchange ideas on the subjects related to unsaturated soils. Unsaturated Soil Mechanics - from Theory to Practice collects more than 140 technical papers, and 10 invited and keynote lectures presented at the sixth Asia-Pacific Conference on Unsaturated Soils (Guilin, China, 23-26 October 2015). The first Asia-Pacific distinguished lecture, launched at the conference, is also included. The contributions address the fundamental behavior of unsaturated soils, and present theoretical and numerical modeling and engineering applications. The topics of concern span the full spectrum from theory to practice, with strong relevance to the problems in the region and beyond such as collapse/swelling, freezing/thawing, desiccation shrinkage, rainfall-induced slope failure, contaminant transport, shale gas extraction and so on, largely representing the latest developments in unsaturated soil mechanics.
The costs of inadequate earthquake engineering are huge, especially for reinforced concrete buildings. This book presents the principles of earthquake-resistant structural engineering, and uses the latest tools and techniques to give practical design guidance to address single or multiple seismic performance levels. It presents an elegant, simple and theoretically coherent design framework. Required strength is determined on the basis of an estimated yield displacement and desired limits of system ductility and drift demands. A simple deterministic approach is presented along with its elaboration into a probabilistic treatment that allows for design to limit annual probabilities of failure. The design method allows the seismic force resisting system to be designed on the basis of elastic analysis results, while nonlinear analysis is used for performance verification. Detailing requirements of ACI 318 and Eurocode 8 are presented. Students will benefit from the coverage of seismology, structural dynamics, reinforced concrete, and capacity design approaches, which allows the book to be used as a foundation text in earthquake engineering.
A major revision of the comprehensive text/reference Written by world-leading geotechnical engineers who share almost 100 years of combined experience, Slope Stability and Stabilization, Second Edition assembles the background information, theory, analytical methods, design and construction approaches, and practical examples necessary to carry out a complete slope stability project. Retaining the best features of the previous edition, this new book has been completely updated to address the latest trends and methodology in the field. Features include:
Slope Stability and Stabilization, Second Edition is filled with current and comprehensive information, making it one of the best resources available on the subject–and an essential reference for today’s and tomorrow’s professionals in geology, geotechnical engineering, soil science, and landscape architecture.
Sex and the Second-Best City deals with the topics of sex and society in the Laws of Plato with recourse to historical context and modern critical theory. It examines reconstructions of ancient "sexuality" with a view to increased clarification. The text of the Laws is considered, along with many of its literary qualities, its influences and the utopian plan that it proposes.
Fundamentals of Earthquake Engineering: From Source to Fragility, Second Edition combines aspects of engineering seismology, structural and geotechnical earthquake engineering to assemble the vital components required for a deep understanding of response of structures to earthquake ground motion, from the seismic source to the evaluation of actions and deformation required for design, and culminating with probabilistic fragility analysis that applies to individual as well as groups of buildings. Basic concepts for accounting for the effects of soil-structure interaction effects in seismic design and assessment are also provided in this second edition. The nature of earthquake risk assessment is inherently multi-disciplinary. Whereas this book addresses only structural safety assessment and design, the problem is cast in its appropriate context by relating structural damage states to societal consequences and expectations, through the fundamental response quantities of stiffness, strength and ductility. This new edition includes material on the nature of earthquake sources and mechanisms, various methods for the characterization of earthquake input motion, effects of soil-structure interaction, damage observed in reconnaissance missions, modeling of structures for the purposes of response simulation, definition of performance limit states, fragility relationships derivation, features and effects of underlying soil, structural and architectural systems for optimal seismic response, and action and deformation quantities suitable for design. Key features: * Unified and novel approach: from source to fragility * Clear conceptual framework for structural response analysis, earthquake input characterization, modelling of soil-structure interaction and derivation of fragility functions * Theory and relevant practical applications are merged within each chapter * Contains a new chapter on the derivation of fragility * Accompanied by a website containing illustrative slides, problems with solutions and worked-through examples Fundamentals of Earthquake Engineering: From Source to Fragility, Second Edition is designed to support graduate teaching and learning, introduce practising structural and geotechnical engineers to earthquake analysis and design problems, as well as being a reference book for further studies.
This volume contains papers of the 9th European Workshop on the Seismic Behaviour of Irregular and Complex Structures (9EWICS) held in Lisbon, Portugal, in 2020. This workshop, organized at Instituto Superior Tecnico, University of Lisbon, continued the successful three-annual series of workshops started back in 1996. Its organization had the sponsorship of Working Group 8 (Seismic Behaviour of Irregular and Complex Structures) of the European Association of Earthquake Engineering.This international event provided a platform for discussion and exchange of ideas and unveiled new insights on the possibilities and challenges of irregular and complex structures under seismic actions. The topics addressed include criteria for regularity, seismic design of irregular structures, seismic assessment of irregular and complex structures, retrofit of irregular and complex structures, and soil-structure interaction for irregular and complex structures. Beyond an excellent number of interesting papers on these topics, this volume includes the papers of the two invited lectures - one devoted to irregularities in RC buildings, including perspectives in current seismic design codes, difficulties in their application and further research needs, and another one dedicated to the challenging and very up to date topic in the area of seismic response of masonry building aggregates in historical centers. This volume includes 26 contributions from authors of 11 countries, giving a complete and international view of the problem.The holds particular interest for all the community involved in the challenging task of seismic design, assessment and/or retrofit of irregular and complex structures.
Rapid advances have been made during the past few decades in earthquake response modification technologies for structures, most notably in base isolation and energy dissipation systems. Many practical applications of various dampers can be found worldwide and, in the United States, damper design has been included in building codes. The current design process is simple and useful for adding supplemental damping up to a reasonable level-but it is not as useful with higher levels of damping. Taking a different approach, Structural Damping: Applications in Seismic Response Modification considers the dynamic responses of structures with added damping devices as systems governed by the combined effect of the static stiffness, period, and damping-or "dynamic stiffness"-of the structure-device system. This formulation supplies additional information for higher-level supplemental damping design that current provisions may not adequately cover. The authors also propose a more comprehensive consideration of the core issues in structural damping, which provides a useful foundation for continued research and development in seismic response modification technologies for performance-based engineering. The book includes design examples, based on the authors' research and practical experience, to illustrate approaches that include higher-level supplemental damping to complement the use of the current NEHRP/ASCE-7 provisions. A self-contained resource on damping design principles, this book helps earthquake engineers select the most effective type of damper and determine the amount and configuration of damping under given working conditions.
This volume presents select papers presented at the 7th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. The papers discuss advances in the fields of soil dynamics and geotechnical earthquake engineering. Some of the themes include ground response analysis & local site effect, seismic slope stability & landslides, application of AI in geotechnical earthquake engineering, etc. A strong emphasis is placed on connecting academic research and field practice, with many examples, case studies, best practices, and discussions on performance based design. This volume will be of interest to researchers and practicing engineers alike.
Nach Erhebungen der Abwassertechnischen Vereinigung (ATV) sind die offentlichen Kanalnetze teilweise stark beschadigt. Danach sollen in den alten Bundeslandern 20% der 300.000 km langen Rohrleitungen schadhaft sein. In den neuen Landern weist gar die Halfte der Abwasserkanale Schaden auf. Zur genauen Positionsbestimmung schadhafter Stellen wurden im Auftrag des BMBF u.a. neue Detektionsmethoden auf akustischer Infrarot- und Radarbasis entwickelt. Das vorliegende Handbuch bietet Kommunen und im Bereich der Kanalsanierung tatigen Unternehmen eine fundierte Hilfestellung bei der Klassifizierung von Schaden und den sich daraus ergebenden Prioritaten bei notwendigen Sanierungsmassnahmen."
The book, after two introductory chapters on seismic design principles and structural seismic analysis methods, proceeds with the detailed description of seismic design methods for steel building structures. These methods include all the well-known methods, like force-based or displacement-based methods, plus some other methods developed by the present authors or other authors that have reached a level of maturity and are applicable to a large class of steel building structures. For every method, detailed practical examples and supporting references are provided in order to illustrate the methods and demonstrate their merits. As a unique feature, the present book describes not just one, as it is the case with existing books on seismic design of steel structures, but various seismic design methods including application examples worked in detail. The book is a valuable source of information, not only for MS and PhD students, but also for researchers and practicing engineers engaged with the design of steel building structures.
This book comprises select proceedings of the Indian Geotechnical Conference 2020 (IGC2020) focusing on recent developments in the field of transportation geotechnics, scour and erosion, offshore geotechnics, and environmental geotechnology. The contents are useful to academicians, researchers, practitioners and policymakers to understand and tackle the challenges in an efficient manner and to adopt appropriate sustainable geotechnical engineering solutions.
This volume presents select papers presented at the 7th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. The papers discuss advances in the fields of earthquake engineering connected with structures. Some of the themes include soil structure interaction, dynamic analysis, underground structures, vibration isolation, seismic response of buildings etc. A strong emphasis is placed on connecting academic research and field practice, with many examples, case studies, and best practices. This volume will be of interest to researchers and practicing engineers alike.
This book presents the select proceedings of the Virtual Conference on Disaster Risk Reduction (VCDRR 2021). It emphasizes on the role of civil engineering for a disaster-resilient society. It presents latest research in geohazards and their mitigation. Various topics covered in this book are earthquake hazard, seismic response of structures and earthquake risk. This book is a comprehensive volume on disaster risk reduction (DRR) and its management for a sustainable built environment. This book will be useful for the students, researchers, policy makers and professionals working in the area of civil engineering and earthquake engineering.
This book comprises chapters on scour and erosion related issues. It is an outcome of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE) Technical Committee 213 Workshop on Scour and Erosion that was held on December 16, 2020. The ISSMGE TC213 Workshop was attended by 368 participants from 12 different countries worldwide. The contents of this book reflect recent advances in the mechanics and countermeasures of scour and erosion, including coastal protection, erosion control, etc. Covering practical issues of geotechnical engineering with academic and research inputs, this volume will be a useful reference for academia and industry alike.
This book adopts numerical method to model soil constitutive relationship while it abandons the traditional idea of looking for plastic potential as the only way to model. Firstly, the triaxial compression tests of expansive soil, sand and clay under different stress paths are introduced; then the elastoplastic constitutive equations of expansive soil, sand and clay under various stress paths are established by numerical modeling method; finally, the constitutive equations are embedded in the finite element program and verified by comparing the finite element calculation results of the triaxial test soil samples with the corresponding test results. The modeling obtains high accuracy.
Now in its fifth edition, this classic textbook continues to offer a well-tailored resource for beginning graduate students in geotechnical engineering. Further developing the basic concepts from undergraduate study, it provides a solid foundation for advanced study. This new edition addresses a variety of recent advances in the field and each section is updated. Braja Das particularly expands the content on consolidation, shear strength of soils, and both elastic and consolidation settlements of shallow foundations to accommodate modern developments. New material includes: Recently published correlations of maximum dry density and optimum moisture content of compaction Recent methods for determination of preconsolidation pressure A new correlation for recompression index Different approaches to estimating the degree of consolidation A discussion on the relevance of laboratory strength tests to field conditions Several new example problems This text can be followed by advanced courses dedicated to topics such as mechanical and chemical stabilization of soils, geo-environmental engineering, critical state soil mechanics, geosynthetics, rock mechanics, and earthquake engineering. It can also be used as a reference by practical consultants. |
![]() ![]() You may like...
Heavy Metals: A Problem Solved…
E. van der Voet, Jeroen B. Guinee, …
Hardcover
R3,020
Discovery Miles 30 200
Informatics in Control, Automation and…
Oleg Gusikhin, Kurosh Madani
Hardcover
R5,692
Discovery Miles 56 920
The Robust Maximum Principle - Theory…
Vladimir G. Boltyanski, Alexander S. Poznyak
Hardcover
R3,688
Discovery Miles 36 880
Analytical Tools and Industrial…
Slavcho Kirillov Rakovsky, Ryszard Kozlowski, …
Paperback
R2,627
Discovery Miles 26 270
Stochastic Geometric Mechanics - CIB…
Sergio Albeverio, Ana Bela Cruzeiro, …
Hardcover
|