![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Communications engineering / telecommunications > WAP (wireless) technology
The high level of technical detail included in standards specifications can make it difficult to find the correlation between the standard specifications and the theoretical results. This book aims to cover both of these elements to give accessible information and support to readers. It explains the current and future trends on communication theory and shows how these developments are implemented in contemporary wireless communication standards. Examining modulation, coding and multiple access techniques, the book is divided into two major sections to cover these functions. The two-stage approach first treats the basics of modulation and coding theory before highlighting how these concepts are defined and implemented in modern wireless communication systems. Part 1 is devoted to the presentation of main L1 procedures and methods including modulation, coding, channel equalization and multiple access techniques. In Part 2, the uses of these procedures and methods in the wide range of wireless communication standards including WLAN, WiMax, WCDMA, HSPA, LTE and cdma2000 are considered.An essential study of the implementation of modulation and coding techniques in modern standards of wireless communication Bridges the gap between the modulation coding theory and the wireless communications standards material Divided into two parts to systematically tackle the topic - the first part develops techniques which are then applied and tailored to real world systems in the second part Covers special aspects of coding theory and how these can be effectively applied to improve the performance of wireless communications systems
MotionCast for Mobile Wireless Networks provides an overview on the research for mobile ad-hoc networks regarding capacity and connectivity. Wireless ad-hoc networks are useful when there is a lack of infrastructure for communication. The proposed notion "MotionCast" is for the capacity analysis of multicast in MANET. A new kind of connectivity (k;m)-connectivity, is also defined, and its critical transmission range for i.i.d. (independently and identically distributed) and random walk mobility models are derived respectively. This book also investigates the related issues of connectivity in mobile and static circumstances. In addition, it provides a survey of the capacity scaling research, which gives a good summary of this field.
This book constitutes the refereed proceedings of the 7th International Conference on Wireless Algorithms, Systems, and Applications, WASA 2012, held in Yellow Mountains, China, in August 2012. The 24 revised full papers presented together with 32 invited papers were carefully reviewed and selected from 116 submissions. The papers cover a wide range of topics such as cognitive radio networks, cyber-physical network systems, mobile handset networking systems, underwater and radar wireless networks, and wireless and mobile security.
This book constitutes the refereed proceedings of the First International Conference on Wireless Sensor Networks for Developing Countries, WSN4DC 2013, held in Jamshoro, Pakistan, in April 2013. The 10 revised full papers presented were carefully reviewed and selected from 30 submissions. The papers are organized in topical sections on WSN applications/services for developing countries; mobile WSN; underwater WSN; VANETS; body area networks; energy harvesting in WSN; WSN and cloud integration; WSN and IoT; QoS and Qot; WSN MAC, network and transport protocols; cross layer approaches; security aspects in WSN; WSN applications in smart grid and energy management; WSN in structural health monitoring.
Over recent years industries have faced the problem of how to connect devices to 'speak' to each other with minimum wiring. Philips Semiconductors faced this problem when they needed to connect many ICs together. The Automotive Industry faced the same problem when it needed to connect tens of microcontrollers in each car. Recently, with smart homes, the problem has started to be part of each home. For instance, you may want to build your smart home with accessories from different manufacturers and you want the devices to 'speak' to each other. Added to that, you may want to control them from a central App or voice assist. Solutions for this problem started with the introduction of Inter Integrated Circuits (IIC) and Controller Area Networks (CAN). Both solutions are wired networks that allow ICs and microcontrollers to be connected in a network to communicate together. In smart home automation, a number of common smart home automation protocols that allow different devices to speak and communicate together have appeared during the last few decades. Some of the smart home protocols come under the umbrella of what is called the "Internet of Things (IoT)". The proposed protocols can be grouped into wired networks e.g. X10, UPB; wireless or radio networks as ZigBee, Z-Wave, Bluetooth; or dual (wired and radio) such as Insteon. This book introduces to the reader some of the most popular Microcontroller and Smart home networks. The book covers in detail the following protocols: * I2C * I3C * CAN * ZigBee * ZigBee Pro * Z-Wave * Bluetooth Wi-Fi, WiMax and Insteon are part of our companion book "Serial Communication Protocols and Standards". This book gives detailed comparisons between the various protocols. To complete the knowledge of the reader, the book gives in the last chapter a short summary on the protocols that we did not fully cover in this volume: Ethernet, Thread, Insteon, X10 and UPB.
The aim of the book is to educate government agencies, operators, vendors and other regulatory institutions how LTE can be deployed to serve public safety market and offer regulatory / public safety features. It is written in such a way that it can be understood by both technical and non-technical personnel with just introductory knowledge in wireless communication. Some sections and chapters about public safety services offered by LTE network are intended to be understood by anyone with no knowledge in wireless communication.
- provides some fundamental concepts related to 5G networks and the 5G NR signal processing. A review of AI and state of the art machine learning techniques is also given. - deals with the 5G/6G and AI enabled applications such as AR/VR, autonomous vehicles, mobile multimedia services, context aware communications, Industrial IoT and security. -elaborates on how AI techniques can enhance network and traffic management in 5G/6G networks. These include AI based mobility management, routing, scheduling, network performance optimization and even energy efficiency. -discusses the application of AI to 5G/6G NR signal processing and also the air interface. AI and deep learning techniques for channel coding, automatic modulation detection, channel estimation and equalization as well as spectrum management are presented with a view to highlight the benefits of using AI as compared to traditional techniques.
Covers details on wireless communication problems, conducive for data-driven solutions Provides a comprehensive account of programming languages, tools, techniques, and good practices Provides an introduction to data-driven techniques applied to wireless communication systems Examines data-driven techniques, performance, and design issues in wireless networks Includes several case studies that examine data-driven solution for QoS in heterogeneous wireless networks
The broadband wireless communications field is growing at an explosive rate, stimulated by a host of important emerging applications ranging from 3G, 4G and wireless LAN. Wideband CDMA and CDMA2000 will be used for 3G. OFDM+CDMA might be a good choice for 4G, CDMA overlay will possibly be used for new-generation broadband wireless LAN. For system planners and designers, the projections of rapidly escalating demand for such wireless services present major challenges and meeting these challenges will require sustained technical innovation on many fronts. The text of this book has been developed through years of research by the author and his graduate students at the University of Hong Kong. The aim of this book is to provide a R&D perspective on the field of broadband wireless communications by describing the recent research developments in this area and also by identifying key directions in which further research is needed. As a background, I presume that the reader has a thorough understanding of digital communications and spread spectrum/CDMA. The book is arranged into 13 chapters. In chapter 1, some key specifications of 3G WCDMA are described and discussed. These techniques include channel coding, rate matching, modulation and spreading, power control, cell search, transmit diversity, soft-handoff, and so son. In Chapter 2, the coherent RAKE reception of Wideband CDMA signals with complex spreading is considered. A dedicated pilot channel, which is separate from data channels, is used for the purpose of channel estimation.
Wireless network security research is multidisciplinary in nature, including data analysis, economics, mathematics, forensics, information technology, and computer science. This text covers cutting-edge research in computational intelligence systems from diverse fields on the complex subject of wireless communication security. It discusses important topics including computational intelligence in wireless network and communications, artificial intelligence and wireless communication security, security risk scenarios in communications, security/resilience metrics and their measurements, data analytics of cyber-crimes, modeling of wireless communication security risks, advances in cyber threats and computer crimes, adaptive and learning techniques for secure estimation and control, decision support systems, fault tolerance and diagnosis, cloud forensics and information systems, and intelligent information retrieval. The book: Discusses computational algorithms for system modeling and optimization in security perspective Focuses on error prediction and fault diagnosis through intelligent information retrieval via wireless technologies Explores a group of practical research problems where security experts can help develop new data-driven methodologies Covers application on artificial intelligence and wireless communication security risk perspective The text is primarily written for senior undergraduate, graduate students, and researchers in the fields of electrical engineering, electronics and communication engineering, and computer engineering. The text comprehensively discusses wide range of wireless communication techniques with emerging computational intelligent trends, to help readers understand the role of wireless technologies in applications touching various spheres of human life with the help of hesitant fuzzy sets based computational modeling. It will be a valuable resource for senior undergraduate, graduate students, and researchers in the fields of electrical engineering, electronics and communication engineering, and computer engineering.
Widely regarded as one of the most promising emerging technologies for driving the future development of wireless communications, cognitive radio has the potential to mitigate the problem of increasing radio spectrum scarcity through dynamic spectrum allocation. Drawing on fundamental elements of information theory, network theory, propagation, optimisation and signal processing, a team of leading experts present a systematic treatment of the core physical and networking principles of cognitive radio and explore key design considerations for the development of new cognitive radio systems. Containing all the underlying principles you need to develop practical applications in cognitive radio, this book is an essential reference for students, researchers and practitioners alike in the field of wireless communications and signal processing.
Relay systems have become a subject of intensive research interest over the recent years, as it is recognized that they can improve performances and extend the coverage area of wireless communication systems. Special attention has been dedicated to them since the proposal appeared for their implementation in mobile cellular systems. Numerous researches conducted after that proposal have enabled incorporation of OFDM based relay systems in both accepted standards for IMT-Advanced systems. Nowadays, researches are ongoing with the aim to define new solutions for performance improvement of the standardized OFDM relay systems for cellular networks and one of the interesting solutions is implementation of subcarrier permutation (SCP) at the relay (R) station. The book "OFDM based relay systems for future wireless communications" presents a comprehensive research results in analyzing behavior and performance of the OFDM based relay systems with SCP. Dual-hop relay scenario with three communication terminals, and no direct link between the source (S) and the destination (D) has been analyzed, as it is compliant with the accepted solutions for IMT-Advanced systems. The book includes performance analysis and performance comparison of OFDM based: amplify-and-forward (AF) relay systems with fixed gain (FG), amplify-and-forward (AF) relay systems with variable gain (VG), decode-and-forward (DF) relay systems, each including two SCP schemes, known to maximize the system capacity and/or improve the bit error rate (BER) performances. Performance comparisons have enabled definition of optimal solutions for the future wireless communication systems in a given conditions, and for the given optimality criteria. OFDM based relay systems for future wireless communications contains recent research results in this area and is ideal for the academic staff and master/research students in area of mobile communication systems, as well as for the personnel in communication industry. Contents: 1. Introduction; 2. General overview of relay techniques; 3. OFDM relay systems; 4. Relay stations in wireless cellular networks; 5. Performance of OFDM AF FG relay systems with subcarrier permutation; 6. Performance of OFDM AF VG relay systems with subcarrier permutation; 7. Performance of OFDM DF relay systems with subcarrier permutation; List of Abbreviations
A comprehensive review to the theory, application and research of machine learning for future wireless communications In one single volume, Machine Learning for Future Wireless Communications provides a comprehensive and highly accessible treatment to the theory, applications and current research developments to the technology aspects related to machine learning for wireless communications and networks. The technology development of machine learning for wireless communications has grown explosively and is one of the biggest trends in related academic, research and industry communities. Deep neural networks-based machine learning technology is a promising tool to attack the big challenge in wireless communications and networks imposed by the increasing demands in terms of capacity, coverage, latency, efficiency flexibility, compatibility, quality of experience and silicon convergence. The author - a noted expert on the topic - covers a wide range of topics including system architecture and optimization, physical-layer and cross-layer processing, air interface and protocol design, beamforming and antenna configuration, network coding and slicing, cell acquisition and handover, scheduling and rate adaption, radio access control, smart proactive caching and adaptive resource allocations. Uniquely organized into three categories: Spectrum Intelligence, Transmission Intelligence and Network Intelligence, this important resource: Offers a comprehensive review of the theory, applications and current developments of machine learning for wireless communications and networks Covers a range of topics from architecture and optimization to adaptive resource allocations Reviews state-of-the-art machine learning based solutions for network coverage Includes an overview of the applications of machine learning algorithms in future wireless networks Explores flexible backhaul and front-haul, cross-layer optimization and coding, full-duplex radio, digital front-end (DFE) and radio-frequency (RF) processing Written for professional engineers, researchers, scientists, manufacturers, network operators, software developers and graduate students, Machine Learning for Future Wireless Communications presents in 21 chapters a comprehensive review of the topic authored by an expert in the field.
The military, the research community, emergency services, and industrial environments all rely on ad hoc mobile wireless networks because of their simple infrastructure and minimal central administration. Now in its second edition, Ad Hoc Mobile Wireless Networks: Principles, Protocols, and Applications explains the concepts, mechanism, design, and performance of these highly valued systems. Following an overview of wireless network fundamentals, the book explores MAC layer, routing, multicast, and transport layer protocols for ad hoc mobile wireless networks. Next, it examines quality of service and energy management systems. Additional chapters cover mobility models for multi-hop ad hoc wireless networks as well as cross-layer design issues. Exploring Bluetooth, IrDA (Infrared Data Association), HomeRF, WiFi, WiMax, Wireless Internet, and Mobile IP, the book contains appropriate examples and problems at the end of each chapter to illustrate each concept. This second edition has been completely updated with the latest technology and includes a new chapter on recent developments in the field, including sensor networks, personal area networks (PANs), smart dress, and vehicular ad hoc networks. Self-organized, self-configured, and self-controlled, ad hoc mobile wireless networks will continue to be valued for a range of applications, as they can be set up and deployed anywhere and anytime. This volume captures the current state of the field as well as upcoming challenges awaiting researchers.
Essential for getting to grips with the Weightless standard for M2M communications, this definitive guide describes and explains the new standard in an accessible manner. It helps you to understand the Weightless standard by revealing its background and rationale. Designed to make clear the context and the fundamental design decisions for Weightless and to provide a readable overview of the standard, it details principal features and issues of the technology, the business case for deployment, network performance and some important applications. This informative book guides you through the key decisions and requirements involved in designing and deploying a Weightless network. Includes a chapter on applications, explaining the relevance of the standard and its potential. Written by one of the lead designers of Weightless, this is an ideal guide for everyone involved with the standard, from those designing equipment to those making use of the technology.
Wireless video communications encompass a broad range of issues and opportunities that serve as the catalyst for technical innovations. To disseminate the most recent advances in this challenging yet exciting field, Advanced Video Communications over Wireless Networks provides an in-depth look at the fundamentals, recent technical achievements, challenges, and emerging trends in mobile and wireless video communications. The editors have carefully selected a panel of researchers with expertise in diverse aspects of wireless video communication to cover a wide spectrum of topics, including the underlying theoretical fundamentals associated with wireless video communications, the transmission schemes tailored to mobile and wireless networks, quality metrics, the architectures of practical systems, as well as some novel directions. They address future directions, including Quality-of-Experience in wireless video communications, video communications over future networks, and 3D video communications. The book presents a collection of tutorials, surveys, and original contributions, providing an up-to-date, accessible reference for further development of research and applications in mobile and wireless video communication systems. The range of coverage and depth of expertise make this book the go-to resource for facing current and future challenges in this field.
A crucial reference tool for the increasing number of scientists who depend upon sensor networks in a widening variety of ways. Coverage includes network design and modeling, network management, data management, security and applications. The topic covered in each chapter receives expository as well as scholarly treatment, covering its history, reviewing state-of-the-art thinking relative to the topic, and discussing currently unsolved problems of special interest.
This book addresses the emerging technology for Orthogonal Frequency Division Multiple Access (OFDMA), covering OFDMA physical layer as well as network technology. The book also includes information on IEEE 802.16e and WiMAX networks and also offers a comparison with other OFDMA technologies. OFDMA is the fastest growing area in the wireless marketplace, and the backbone of systems used in WiMAX. WiMAX is the technology that enables wireless users to communicate at any time from any location without having to find a WiFi hotspot.
Wireless sensor networks (WSNs) utilize fast, cheap, and effective applications to imitate the human intelligence capability of sensing on a wider distributed scale. But acquiring data from the deployment area of a WSN is not always easy and multiple issues arise, including the limited resources of sensor devices run with one-time batteries. Additional WSN concerns include the external environment, routing, data aggregation, and ensuring quality of service (QoS) and security. Solutions have been developed for various types of application scenarios, but many problems still remain as open research challenges. Wireless Sensor Networks: Current Status and Future Trends covers the various issues associated with WSNs, including their structure, activities, and applications. Bringing together the contributions of researchers and experts in the field, this book explores: Applications of WSNs, data-centric storage, environmental forest monitoring, and the fundamentals of wireless body area networks Mobile medium access control (MAC) protocols, cooperative diversity sensor systems, and WSNs operating in IEEE 802.11 networks Location and position estimation in WSNs, techniques used in localization algorithms, and localization schemes Energy-centric simulation and design space exploration The fundamentals of MAC protocols and specific requirements and problems Protocols and data gathering Privacy and security issues in WSNs, solutions based on watermarking, and proposed work on intrusion detection systems (IDS) in WSNs Reviewing current trends in research and development as well as future expectations in the relevant areas, this book is a valuable reference for students, graduates, academics, researchers of computer science, and engineers, whether working in professional organizations or research institutions.
This book constitutes the thoroughly refereed post-conference proceedings of the Third International ICST Conference on Personal Satellite Services, PSATS 2011, held in Malaga, Spain, in February 2011. The 33 revised full papers presented were carefully reviewed and selected and cover a wide range of topics such as multimedia IP, next generation satellite networks, bandwidth allocation, aeronautic communications for air traffic management, DVB-S2, hybrid networks, delay tolerant networking, channel estimation and interference management, satellite antenna design, and localization systems.
The evolution of broadband access networks toward bimodal fiber-wireless (FiWi) access networks, described in this book, may be viewed as the endgame of broadband access. After discussing the economic impact of broadband access and current worldwide deployment statistics, all the major legacy wireline and wireless broadband access technologies are reviewed. State-of-the-art GPON and EPON fiber access networks are described, including their migration to next-generation systems such as OCDMA and OFDMA PONs. The latest developments of wireless access networks are covered, including VHT WLAN, Gigabit WiMAX, LTE and WMN. The advantages of FiWi access networks are demonstrated by applying powerful network coding, heterogeneous optical and wireless protection, hierarchical frame aggregation, hybrid routing and QoS continuity techniques across the optical-wireless interface. The book is an essential reference for anyone working on optical fiber access networks, wireless access networks or converged FiWi systems.
Whether you are a student taking an introductory MEMS course or a practising engineer who needs to get up to speed quickly on MEMS design, this practical guide provides the hands-on experience needed to design, fabricate and test MEMS devices. You will learn how to use foundry multi-project fabrication processes for low-cost MEMS projects, as well as computer-aided design tools (layout, modeling) that can be used for the design of MEMS devices. Numerous design examples are described and analysed, from fields including micro-mechanics, electrostatics, optical MEMS, thermal MEMS and fluidic MEMS. There's also a final chapter on packaging and testing MEMS devices, as well as exercises and design challenges at the end of every chapter. Solutions to the design challenge problems are provided online.
In the last few years, there has been extensive research activity in the emerging area of Intermittently Connected Mobile Ad Hoc Networks (ICMANs). By considering the nature of intermittent connectivity in most real word mobile environments without any restrictions placed on users' behavior, ICMANs are eventually formed without any assumption with regard to the existence of a end-to-end path between two nodes wishing to communicate. It is different from the conventional Mobile Ad Hoc Networks (MANETs), which have been implicitly viewed as a connected graph with established complete paths between every pair of nodes. For the conventional MANETs, mobility of nodes is considered as a challenge and needs to be handled properly to enable seamless communication between nodes. However, to overcome intermittent connectivity in the ICMANs context, mobility is recognized as a critical component for data communications between the nodes that may never be part of the same connected portion of the network. This comes at the cost of addition considerable delay in data forwarding, since data are often stored and carried by the intermediate nodes waiting for the mobility to generate the next forwarding opportunity that can probably bring it close to the destination. Such incurred large delays primarily limit ICMANs to the applications, which must tolerate delays beyond traditional forwarding delays. ICMANs belong to the family of delay tolerant networks (DTNs). However, the unique characteristics (e.g., self-organizing, random mobility and ad hoc based connection) derived from MANETs distinguish ICMANs from other typical DTNs such as interplanetary network (IPN) with infrastructure-based architecture. By allowing mobile nodes to connect and disconnect based on their behaviors and wills, ICMANs enable a number of novel applications to become possible in the field of MANETs. For example, there is a growing demand for efficient architectures for deploying opportunistic content distribution systems over ICMANs. This is because a large number of smart handheld devices with powerful functions enable mobile users to utilize low cost wireless connectivities such as Bluetooth and IEEE 802.11 for sharing and exchanging the multimedia contents anytime anywhere. Note that such phenomenal growth of content-rich services has promoted a new kind of networking where the content is delivered from its source (referred to as publisher) towards interested users (referred to as subscribers) rather than towards the pre-specified destinations. Compared to the extensive research activities relating to the routing and forwarding issues in ICMANs and even DTNs, opportunistic content distribution is just in its early stage and has not been widely addressed. With all these in mind, this book provides an in-depth discussion on the latest research efforts for opportunistic content distribution over ICMANs.
This book presents an algorithm for the detection of an orthogonal frequency division multiplexing (OFDM) signal in a cognitive radio context by means of a joint and iterative channel and noise estimation technique. Based on the minimum mean square criterion, it performs an accurate detection of a user in a frequency band, by achieving a quasi-optimal channel and noise variance estimation if the signal is present, and by estimating the noise level in the band if the signal is absent. Organized into three chapters, the first chapter provides the background against which the system model is presented, as well as some basics concerning the channel statistics and the transmission of an OFDM signal over a multipath channel. In Chapter 2, the proposed iterative algorithm for the noise variance and the channel estimation is detailed, and in Chapter 3, an application of the algorithm for the free-band detection is proposed. In both Chapters 2 and 3, the principle of the algorithm is presented in a simple way, and more elaborate developments are also provided. The different assumptions and assertions in the developments and the performance of the proposed method are validated through simulations, and compared to methods of the scientific literature.
While mobile phones enjoy the largest production volume ever of any consumer electronics products, the demands they place on radio-frequency (RF) transceivers are particularly aggressive, especially on integration with digital processors, low area, low power consumption, while being robust against process-voltage-temperature variations. Since mobile terminals inherently operate on batteries, their power budget is severely constrained. To keep up with the ever increasing data-rate, an ever-decreasing power per bit is required to maintain the battery lifetime. The RF oscillator is the second most power-hungry block of a wireless radio (after power amplifiers). Consequently, any power reduction in an RF oscillator will greatly benefit the overall power efficiency of the cellular transceiver. Moreover, the RF oscillators' purity limits the transceiver performance. The oscillator's phase noise results in power leakage into adjacent channels in a transmit mode and reciprocal mixing in a receive mode. On the other hand, the multi-standard and multi-band transceivers that are now trending demand wide tuning range oscillators. However, broadening the oscillator's tuning range is usually at the expense of die area (cost) or phase noise. The main goal of this book is to bring forth the exciting and innovative RF oscillator structures that demonstrate better phase noise performance, lower cost, and higher power efficiency than currently achievable. Technical topics discussed in RF CMOS Oscillators for Modern Wireless Applications include: - Design and analysis of low phase-noise class-F oscillators - Analyze a technique to reduce 1/f noise up-conversion in the oscillators - Design and analysis of low power/low voltage oscillators - Wide tuning range oscillators - Reliability study of RF oscillators in nanoscale CMOS |
You may like...
Pathways to Privatization in Education
Joseph Murphy, Scott W. Gilmer, …
Hardcover
R2,570
Discovery Miles 25 700
Privatisation in the European Union…
Judith Clifton, Francisco Comin, …
Hardcover
R2,750
Discovery Miles 27 500
Privatization in Eastern Europe - Is the…
Roman Frydman, Andrzej Rapaczynski
Paperback
R3,261
Discovery Miles 32 610
Privatisation and Structural Change in…
Yelena Kalyuzhnova, Wladimir Andreff
Hardcover
R1,419
Discovery Miles 14 190
Privatization, Corporate Governance and…
E. Rosenbaum, F. Boenker, …
Hardcover
R2,666
Discovery Miles 26 660
G Protein Methods and Protocols - Role…
Ram K. Mishra, Glen B. Baker, …
Hardcover
R4,080
Discovery Miles 40 800
|