0
Your cart

Your cart is empty

Books > Computing & IT > Applications of computing > Artificial intelligence > Natural language & machine translation

Buy Now

Hands-On Unsupervised Learning with Python - Implement machine learning and deep learning models using Scikit-Learn, TensorFlow, and more (Paperback) Loot Price: R1,345
Discovery Miles 13 450
Hands-On Unsupervised Learning with Python - Implement machine learning and deep learning models using Scikit-Learn,...

Hands-On Unsupervised Learning with Python - Implement machine learning and deep learning models using Scikit-Learn, TensorFlow, and more (Paperback)

Giuseppe Bonaccorso

 (sign in to rate)
Loot Price R1,345 Discovery Miles 13 450 | Repayment Terms: R126 pm x 12*

Bookmark and Share

Expected to ship within 10 - 15 working days

Discover the skill-sets required to implement various approaches to Machine Learning with Python Key Features Explore unsupervised learning with clustering, autoencoders, restricted Boltzmann machines, and more Build your own neural network models using modern Python libraries Practical examples show you how to implement different machine learning and deep learning techniques Book DescriptionUnsupervised learning is about making use of raw, untagged data and applying learning algorithms to it to help a machine predict its outcome. With this book, you will explore the concept of unsupervised learning to cluster large sets of data and analyze them repeatedly until the desired outcome is found using Python. This book starts with the key differences between supervised, unsupervised, and semi-supervised learning. You will be introduced to the best-used libraries and frameworks from the Python ecosystem and address unsupervised learning in both the machine learning and deep learning domains. You will explore various algorithms, techniques that are used to implement unsupervised learning in real-world use cases. You will learn a variety of unsupervised learning approaches, including randomized optimization, clustering, feature selection and transformation, and information theory. You will get hands-on experience with how neural networks can be employed in unsupervised scenarios. You will also explore the steps involved in building and training a GAN in order to process images. By the end of this book, you will have learned the art of unsupervised learning for different real-world challenges. What you will learn Use cluster algorithms to identify and optimize natural groups of data Explore advanced non-linear and hierarchical clustering in action Soft label assignments for fuzzy c-means and Gaussian mixture models Detect anomalies through density estimation Perform principal component analysis using neural network models Create unsupervised models using GANs Who this book is forThis book is intended for statisticians, data scientists, machine learning developers, and deep learning practitioners who want to build smart applications by implementing key building block unsupervised learning, and master all the new techniques and algorithms offered in machine learning and deep learning using real-world examples. Some prior knowledge of machine learning concepts and statistics is desirable.

General

Imprint: Packt Publishing Limited
Country of origin: United Kingdom
Release date: March 2019
Authors: Giuseppe Bonaccorso
Dimensions: 93 x 75 x 27mm (L x W x T)
Format: Paperback
Pages: 386
ISBN-13: 978-1-78934-827-9
Categories: Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning
Books > Computing & IT > Applications of computing > Artificial intelligence > Natural language & machine translation
Promotions
LSN: 1-78934-827-7
Barcode: 9781789348279

Is the information for this product incomplete, wrong or inappropriate? Let us know about it.

Does this product have an incorrect or missing image? Send us a new image.

Is this product missing categories? Add more categories.

Review This Product

No reviews yet - be the first to create one!

Partners