0
Your cart

Your cart is empty

Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning

Buy Now

Mastering Machine Learning Algorithms - Expert techniques to implement popular machine learning algorithms and fine-tune your models (Paperback) Loot Price: R1,346
Discovery Miles 13 460
Mastering Machine Learning Algorithms - Expert techniques to implement popular machine learning algorithms and fine-tune your...

Mastering Machine Learning Algorithms - Expert techniques to implement popular machine learning algorithms and fine-tune your models (Paperback)

Giuseppe Bonaccorso

 (sign in to rate)
Loot Price R1,346 Discovery Miles 13 460 | Repayment Terms: R126 pm x 12*

Bookmark and Share

Expected to ship within 10 - 15 working days

Explore and master the most important algorithms for solving complex machine learning problems. Key Features Discover high-performing machine learning algorithms and understand how they work in depth. One-stop solution to mastering supervised, unsupervised, and semi-supervised machine learning algorithms and their implementation. Master concepts related to algorithm tuning, parameter optimization, and more Book DescriptionMachine learning is a subset of AI that aims to make modern-day computer systems smarter and more intelligent. The real power of machine learning resides in its algorithms, which make even the most difficult things capable of being handled by machines. However, with the advancement in the technology and requirements of data, machines will have to be smarter than they are today to meet the overwhelming data needs; mastering these algorithms and using them optimally is the need of the hour. Mastering Machine Learning Algorithms is your complete guide to quickly getting to grips with popular machine learning algorithms. You will be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and will learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this book will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries such as scikit-learn. You will also learn how to use Keras and TensorFlow to train effective neural networks. If you are looking for a single resource to study, implement, and solve end-to-end machine learning problems and use-cases, this is the book you need. What you will learn Explore how a ML model can be trained, optimized, and evaluated Understand how to create and learn static and dynamic probabilistic models Successfully cluster high-dimensional data and evaluate model accuracy Discover how artificial neural networks work and how to train, optimize, and validate them Work with Autoencoders and Generative Adversarial Networks Apply label spreading and propagation to large datasets Explore the most important Reinforcement Learning techniques Who this book is forThis book is an ideal and relevant source of content for data science professionals who want to delve into complex machine learning algorithms, calibrate models, and improve the predictions of the trained model. A basic knowledge of machine learning is preferred to get the best out of this guide.

General

Imprint: Packt Publishing Limited
Country of origin: United Kingdom
Release date: May 2018
Authors: Giuseppe Bonaccorso
Dimensions: 93 x 75 x 39mm (L x W x H)
Format: Paperback
Pages: 576
ISBN-13: 978-1-78862-111-3
Categories: Books > Computing & IT > General theory of computing > Data structures
Books > Computing & IT > Computer programming > Algorithms & procedures
Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning
Promotions
LSN: 1-78862-111-5
Barcode: 9781788621113

Is the information for this product incomplete, wrong or inappropriate? Let us know about it.

Does this product have an incorrect or missing image? Send us a new image.

Is this product missing categories? Add more categories.

Review This Product

No reviews yet - be the first to create one!

Partners