0
Your cart

Your cart is empty

Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning

Buy Now

Hands-On Ensemble Learning with R - A beginner's guide to combining the power of machine learning algorithms using ensemble techniques (Paperback) Loot Price: R1,199
Discovery Miles 11 990
Hands-On Ensemble Learning with R - A beginner's guide to combining the power of machine learning algorithms using...

Hands-On Ensemble Learning with R - A beginner's guide to combining the power of machine learning algorithms using ensemble techniques (Paperback)

Prabhanjan Narayanachar Tattar

 (sign in to rate)
Loot Price R1,199 Discovery Miles 11 990 | Repayment Terms: R112 pm x 12*

Bookmark and Share

Expected to ship within 10 - 15 working days

Explore powerful R packages to create predictive models using ensemble methods Key Features Implement machine learning algorithms to build ensemble-efficient models Explore powerful R packages to create predictive models using ensemble methods Learn to build ensemble models on large datasets using a practical approach Book DescriptionEnsemble techniques are used for combining two or more similar or dissimilar machine learning algorithms to create a stronger model. Such a model delivers superior prediction power and can give your datasets a boost in accuracy. Hands-On Ensemble Learning with R begins with the important statistical resampling methods. You will then walk through the central trilogy of ensemble techniques - bagging, random forest, and boosting - then you'll learn how they can be used to provide greater accuracy on large datasets using popular R packages. You will learn how to combine model predictions using different machine learning algorithms to build ensemble models. In addition to this, you will explore how to improve the performance of your ensemble models. By the end of this book, you will have learned how machine learning algorithms can be combined to reduce common problems and build simple efficient ensemble models with the help of real-world examples. What you will learn Carry out an essential review of re-sampling methods, bootstrap, and jackknife Explore the key ensemble methods: bagging, random forests, and boosting Use multiple algorithms to make strong predictive models Enjoy a comprehensive treatment of boosting methods Supplement methods with statistical tests, such as ROC Walk through data structures in classification, regression, survival, and time series data Use the supplied R code to implement ensemble methods Learn stacking method to combine heterogeneous machine learning models Who this book is forThis book is for you if you are a data scientist or machine learning developer who wants to implement machine learning techniques by building ensemble models with the power of R. You will learn how to combine different machine learning algorithms to perform efficient data processing. Basic knowledge of machine learning techniques and programming knowledge of R would be an added advantage.

General

Imprint: Packt Publishing Limited
Country of origin: United Kingdom
Release date: July 2018
Authors: Prabhanjan Narayanachar Tattar
Dimensions: 93 x 75mm (L x W)
Format: Paperback
Pages: 376
ISBN-13: 978-1-78862-414-5
Categories: Books > Computing & IT > General theory of computing > Mathematical theory of computation
Books > Computing & IT > Applications of computing > Databases > Data capture & analysis
Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning
Promotions
LSN: 1-78862-414-9
Barcode: 9781788624145

Is the information for this product incomplete, wrong or inappropriate? Let us know about it.

Does this product have an incorrect or missing image? Send us a new image.

Is this product missing categories? Add more categories.

Review This Product

No reviews yet - be the first to create one!

Partners