0
Your cart

Your cart is empty

Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning

Buy Now

Statistical Machine Learning - A Unified Framework (Hardcover) Loot Price: R3,409
Discovery Miles 34 090
Statistical Machine Learning - A Unified Framework (Hardcover): Richard Golden

Statistical Machine Learning - A Unified Framework (Hardcover)

Richard Golden

Series: Chapman & Hall/CRC Texts in Statistical Science

 (sign in to rate)
Loot Price R3,409 Discovery Miles 34 090 | Repayment Terms: R319 pm x 12*

Bookmark and Share

Expected to ship within 10 - 15 working days

The recent rapid growth in the variety and complexity of new machine learning architectures requires the development of improved methods for designing, analyzing, evaluating, and communicating machine learning technologies. Statistical Machine Learning: A Unified Framework provides students, engineers, and scientists with tools from mathematical statistics and nonlinear optimization theory to become experts in the field of machine learning. In particular, the material in this text directly supports the mathematical analysis and design of old, new, and not-yet-invented nonlinear high-dimensional machine learning algorithms. Features: Unified empirical risk minimization framework supports rigorous mathematical analyses of widely used supervised, unsupervised, and reinforcement machine learning algorithms Matrix calculus methods for supporting machine learning analysis and design applications Explicit conditions for ensuring convergence of adaptive, batch, minibatch, MCEM, and MCMC learning algorithms that minimize both unimodal and multimodal objective functions Explicit conditions for characterizing asymptotic properties of M-estimators and model selection criteria such as AIC and BIC in the presence of possible model misspecification This advanced text is suitable for graduate students or highly motivated undergraduate students in statistics, computer science, electrical engineering, and applied mathematics. The text is self-contained and only assumes knowledge of lower-division linear algebra and upper-division probability theory. Students, professional engineers, and multidisciplinary scientists possessing these minimal prerequisites will find this text challenging yet accessible. About the Author: Richard M. Golden (Ph.D., M.S.E.E., B.S.E.E.) is Professor of Cognitive Science and Participating Faculty Member in Electrical Engineering at the University of Texas at Dallas. Dr. Golden has published articles and given talks at scientific conferences on a wide range of topics in the fields of both statistics and machine learning over the past three decades. His long-term research interests include identifying conditions for the convergence of deterministic and stochastic machine learning algorithms and investigating estimation and inference in the presence of possibly misspecified probability models.

General

Imprint: Crc Press
Country of origin: United Kingdom
Series: Chapman & Hall/CRC Texts in Statistical Science
Release date: July 2020
First published: 2020
Authors: Richard Golden
Dimensions: 254 x 178 x 32mm (L x W x T)
Format: Hardcover
Pages: 506
ISBN-13: 978-1-138-48469-6
Categories: Books > Science & Mathematics > Mathematics > Probability & statistics
Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning
Promotions
LSN: 1-138-48469-5
Barcode: 9781138484696

Is the information for this product incomplete, wrong or inappropriate? Let us know about it.

Does this product have an incorrect or missing image? Send us a new image.

Is this product missing categories? Add more categories.

Review This Product

No reviews yet - be the first to create one!

You might also like..

Hardware Accelerator Systems for…
Shiho Kim, Ganesh Chandra Deka Hardcover R3,950 Discovery Miles 39 500
Learning-Based Adaptive Control - An…
Mouhacine Benosman Paperback R2,569 Discovery Miles 25 690
Machine Learning and Data Mining
I Kononenko, M Kukar Paperback R1,903 Discovery Miles 19 030
Autonomous Mobile Robots - Planning…
Rahul Kala Paperback R4,294 Discovery Miles 42 940
Digital Technologies for Agriculture
Narendra Rathore Singh Hardcover R6,512 Discovery Miles 65 120
Hamiltonian Monte Carlo Methods in…
Tshilidzi Marwala, Rendani Mbuvha, … Paperback R3,518 Discovery Miles 35 180
Machine Learning and Pattern Recognition…
Jahan B. Ghasemi Paperback R3,925 Discovery Miles 39 250
Statistical Modeling in Machine Learning…
Tilottama Goswami, G. R. Sinha Paperback R3,925 Discovery Miles 39 250
Adversarial Robustness for Machine…
Pin-Yu Chen, Cho-Jui Hsieh Paperback R2,204 Discovery Miles 22 040
Machine Learning for Planetary Science
Joern Helbert, Mario D'Amore, … Paperback R3,380 Discovery Miles 33 800
Application of Machine Learning in…
Mohammad Ayoub Khan, Rijwan Khan, … Paperback R3,433 Discovery Miles 34 330
Artificial Intelligence, Machine…
Shikha Jain, Kavita Pandey, … Paperback R2,958 Discovery Miles 29 580

See more

Partners