0
Your cart

Your cart is empty

Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning

Buy Now

Machine Learning for Algorithmic Trading - Predictive models to extract signals from market and alternative data for systematic trading strategies with Python, 2nd Edition (Paperback, 2nd Revised edition) Loot Price: R1,509
Discovery Miles 15 090
Machine Learning for Algorithmic Trading - Predictive models to extract signals from market and alternative data for systematic...

Machine Learning for Algorithmic Trading - Predictive models to extract signals from market and alternative data for systematic trading strategies with Python, 2nd Edition (Paperback, 2nd Revised edition)

Stefan Jansen

 (sign in to rate)
Loot Price R1,509 Discovery Miles 15 090 | Repayment Terms: R141 pm x 12*

Bookmark and Share

Expected to ship within 18 - 22 working days

Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key Features Design, train, and evaluate machine learning algorithms that underpin automated trading strategies Create a research and strategy development process to apply predictive modeling to trading decisions Leverage NLP and deep learning to extract tradeable signals from market and alternative data Book DescriptionThe explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learn Leverage market, fundamental, and alternative text and image data Research and evaluate alpha factors using statistics, Alphalens, and SHAP values Implement machine learning techniques to solve investment and trading problems Backtest and evaluate trading strategies based on machine learning using Zipline and Backtrader Optimize portfolio risk and performance analysis using pandas, NumPy, and pyfolio Create a pairs trading strategy based on cointegration for US equities and ETFs Train a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes data Who this book is forIf you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.

General

Imprint: Packt Publishing Limited
Country of origin: United Kingdom
Release date: July 2020
Authors: Stefan Jansen
Dimensions: 93 x 75 x 46mm (L x W x H)
Format: Paperback
Pages: 822
Edition: 2nd Revised edition
ISBN-13: 978-1-83921-771-5
Categories: Books > Computing & IT > Applications of computing > Databases > Data capture & analysis
Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning
Books > Computing & IT > Applications of computing > Artificial intelligence > Neural networks
Promotions
LSN: 1-83921-771-5
Barcode: 9781839217715

Is the information for this product incomplete, wrong or inappropriate? Let us know about it.

Does this product have an incorrect or missing image? Send us a new image.

Is this product missing categories? Add more categories.

Review This Product

No reviews yet - be the first to create one!

You might also like..

Hardware Accelerator Systems for…
Shiho Kim, Ganesh Chandra Deka Hardcover R3,950 Discovery Miles 39 500
Learning-Based Adaptive Control - An…
Mouhacine Benosman Paperback R2,569 Discovery Miles 25 690
Machine Learning and Data Mining
I Kononenko, M Kukar Paperback R1,903 Discovery Miles 19 030
Autonomous Mobile Robots - Planning…
Rahul Kala Paperback R4,294 Discovery Miles 42 940
Hamiltonian Monte Carlo Methods in…
Tshilidzi Marwala, Rendani Mbuvha, … Paperback R3,518 Discovery Miles 35 180
Machine Learning and Pattern Recognition…
Jahan B. Ghasemi Paperback R3,925 Discovery Miles 39 250
Statistical Modeling in Machine Learning…
Tilottama Goswami, G. R. Sinha Paperback R3,925 Discovery Miles 39 250
Adversarial Robustness for Machine…
Pin-Yu Chen, Cho-Jui Hsieh Paperback R2,204 Discovery Miles 22 040
Machine Learning for Planetary Science
Joern Helbert, Mario D'Amore, … Paperback R3,380 Discovery Miles 33 800
Application of Machine Learning in…
Mohammad Ayoub Khan, Rijwan Khan, … Paperback R3,433 Discovery Miles 34 330
Artificial Intelligence, Machine…
Shikha Jain, Kavita Pandey, … Paperback R2,958 Discovery Miles 29 580
Deep Learning for Sustainable…
Ramesh Poonia, Vijander Singh, … Paperback R2,957 Discovery Miles 29 570

See more

Partners