0
Your cart

Your cart is empty

Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning

Buy Now

Practical Deep Learning at Scale with MLflow - Bridge the gap between offline experimentation and online production (Paperback) Loot Price: R1,154
Discovery Miles 11 540
Practical Deep Learning at Scale with MLflow - Bridge the gap between offline experimentation and online production...

Practical Deep Learning at Scale with MLflow - Bridge the gap between offline experimentation and online production (Paperback)

Yong Liu, Dr. Matei Zaharia

 (sign in to rate)
Loot Price R1,154 Discovery Miles 11 540 | Repayment Terms: R108 pm x 12*

Bookmark and Share

Expected to ship within 10 - 15 working days

Train, test, run, track, store, tune, deploy, and explain provenance-aware deep learning models and pipelines at scale with reproducibility using MLflow Key Features Focus on deep learning models and MLflow to develop practical business AI solutions at scale Ship deep learning pipelines from experimentation to production with provenance tracking Learn to train, run, tune and deploy deep learning pipelines with explainability and reproducibility Book DescriptionThe book starts with an overview of the deep learning (DL) life cycle and the emerging Machine Learning Ops (MLOps) field, providing a clear picture of the four pillars of deep learning: data, model, code, and explainability and the role of MLflow in these areas. From there onward, it guides you step by step in understanding the concept of MLflow experiments and usage patterns, using MLflow as a unified framework to track DL data, code and pipelines, models, parameters, and metrics at scale. You'll also tackle running DL pipelines in a distributed execution environment with reproducibility and provenance tracking, and tuning DL models through hyperparameter optimization (HPO) with Ray Tune, Optuna, and HyperBand. As you progress, you'll learn how to build a multi-step DL inference pipeline with preprocessing and postprocessing steps, deploy a DL inference pipeline for production using Ray Serve and AWS SageMaker, and finally create a DL explanation as a service (EaaS) using the popular Shapley Additive Explanations (SHAP) toolbox. By the end of this book, you'll have built the foundation and gained the hands-on experience you need to develop a DL pipeline solution from initial offline experimentation to final deployment and production, all within a reproducible and open source framework. What you will learn Understand MLOps and deep learning life cycle development Track deep learning models, code, data, parameters, and metrics Build, deploy, and run deep learning model pipelines anywhere Run hyperparameter optimization at scale to tune deep learning models Build production-grade multi-step deep learning inference pipelines Implement scalable deep learning explainability as a service Deploy deep learning batch and streaming inference services Ship practical NLP solutions from experimentation to production Who this book is forThis book is for machine learning practitioners including data scientists, data engineers, ML engineers, and scientists who want to build scalable full life cycle deep learning pipelines with reproducibility and provenance tracking using MLflow. A basic understanding of data science and machine learning is necessary to grasp the concepts presented in this book.

General

Imprint: Packt Publishing Limited
Country of origin: United Kingdom
Release date: July 2022
Authors: Yong Liu • Dr. Matei Zaharia
Dimensions: 93 x 75mm (L x W)
Format: Paperback
Pages: 288
ISBN-13: 978-1-80324-133-3
Categories: Books > Computing & IT > General theory of computing > Systems analysis & design
Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning
Promotions
LSN: 1-80324-133-0
Barcode: 9781803241333

Is the information for this product incomplete, wrong or inappropriate? Let us know about it.

Does this product have an incorrect or missing image? Send us a new image.

Is this product missing categories? Add more categories.

Review This Product

No reviews yet - be the first to create one!

You might also like..

Machine Learning and Data Mining
I Kononenko, M Kukar Paperback R1,960 Discovery Miles 19 600
Statistical Modeling in Machine Learning…
Tilottama Goswami, G. R. Sinha Paperback R4,069 Discovery Miles 40 690
Cognitive Robotics and Adaptive…
Maki K. Habib Hardcover R2,835 Discovery Miles 28 350
Multimedia Streaming in SDN/NFV and 5G…
Barakabitze Hardcover R3,142 Discovery Miles 31 420
Machine Learning for Planetary Science
Joern Helbert, Mario D'Amore, … Paperback R3,500 Discovery Miles 35 000
Cyber-Physical System Solutions for…
Vanamoorthy Muthumanikandan, Anbalagan Bhuvaneswari, … Hardcover R7,369 Discovery Miles 73 690
Cognitive Data Models for Sustainable…
Siddhartha Bhattacharyya, Naba Kumar Mondal, … Paperback R2,864 Discovery Miles 28 640
Machine Learning Techniques for Pattern…
Mohit Dua, Ankit Kumar Jain Hardcover R8,843 Discovery Miles 88 430
Deep Learning for Chest Radiographs…
Yashvi Chandola, Jitendra Virmani, … Paperback R2,124 Discovery Miles 21 240
Basic Python Commands - Learn the Basic…
Manuel Mcfeely Hardcover R869 R727 Discovery Miles 7 270
Get Started Programming with Python…
Manuel Mcfeely Hardcover R843 R707 Discovery Miles 7 070
Hardware Accelerator Systems for…
Shiho Kim, Ganesh Chandra Deka Hardcover R4,095 Discovery Miles 40 950

See more

Partners