Books > Computing & IT > Computer software packages > Other software packages > Mathematical & statistical software
|
Buy Now
R for Data Science Cookbook (Paperback)
Loot Price: R1,303
Discovery Miles 13 030
|
|
R for Data Science Cookbook (Paperback)
Expected to ship within 10 - 15 working days
|
Over 100 hands-on recipes to effectively solve real-world data
problems using the most popular R packages and techniques About
This Book * Gain insight into how data scientists collect, process,
analyze, and visualize data using some of the most popular R
packages * Understand how to apply useful data analysis techniques
in R for real-world applications * An easy-to-follow guide to make
the life of data scientist easier with the problems faced while
performing data analysis Who This Book Is For This book is for
those who are already familiar with the basic operation of R, but
want to learn how to efficiently and effectively analyze real-world
data problems using practical R packages. What You Will Learn * Get
to know the functional characteristics of R language * Extract,
transform, and load data from heterogeneous sources * Understand
how easily R can confront probability and statistics problems * Get
simple R instructions to quickly organize and manipulate large
datasets * Create professional data visualizations and interactive
reports * Predict user purchase behavior by adopting a
classification approach * Implement data mining techniques to
discover items that are frequently purchased together * Group
similar text documents by using various clustering methods In
Detail This cookbook offers a range of data analysis samples in
simple and straightforward R code, providing step-by-step resources
and time-saving methods to help you solve data problems
efficiently. The first section deals with how to create R functions
to avoid the unnecessary duplication of code. You will learn how to
prepare, process, and perform sophisticated ETL for heterogeneous
data sources with R packages. An example of data manipulation is
provided, illustrating how to use the "dplyr" and "data.table"
packages to efficiently process larger data structures. We also
focus on "ggplot2" and show you how to create advanced figures for
data exploration. In addition, you will learn how to build an
interactive report using the "ggvis" package. Later chapters offer
insight into time series analysis on financial data, while there is
detailed information on the hot topic of machine learning,
including data classification, regression, clustering, association
rule mining, and dimension reduction. By the end of this book, you
will understand how to resolve issues and will be able to
comfortably offer solutions to problems encountered while
performing data analysis. Style and approach This easy-to-follow
guide is full of hands-on examples of data analysis with R. Each
topic is fully explained beginning with the core concept, followed
by step-by-step practical examples, and concluding with detailed
explanations of each concept used.
General
Is the information for this product incomplete, wrong or inappropriate?
Let us know about it.
Does this product have an incorrect or missing image?
Send us a new image.
Is this product missing categories?
Add more categories.
Review This Product
No reviews yet - be the first to create one!
|
|
Email address subscribed successfully.
A activation email has been sent to you.
Please click the link in that email to activate your subscription.