Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
This book presents an overview of recent advances in our understanding of the genesis of diamonds and the associated phases. It is divided into three main parts, starting with an introduction to the analysis of diamond inclusions to infer the formation processes. In turn, the second part of the book presents high-pressure experimental studies in mantle diamond-parental mineral systems with representative multicomponent boundary compositions. The experimental syngenesis phase diagrams provided reveal the physicochemical mechanisms of diamond nucleation and substantiate the mantle-carbonatite concept of the genesis of diamonds and associated phases. Lastly, the book describes the genetic classification of diamond-hosted mineral inclusions and experimentally determined RE "mineral-parental melt" partition coefficients. The physicochemical experimental evidence presented shows the driving forces behind the fractional evolution of the mantle magmas and diamond-parental melts. Given the depth and breadth of its coverage, the book offers researchers essential new insights into the ways diamonds and associated minerals and rocks are naturally created.
Alter L. Litvin tells describes what life was really like for professional Soviet historians under regimes from Lenin to Gorbachev, and assesses the efforts made since 1991 to create a more truthful picture of the Russian past. Passionate yet fair-minded, this is the first account of the subject to appear in English.
This book sheds valuable new light on the genetic mineralogy of lower-mantle diamonds and syngenetic minerals. It presents groundbreaking experimental results revealing the melting relations of ultrabasic and basic associations and a physicochemical peritectic mechanism of their evolution. The experimental investigations included here reveal the key multicomponent, multiphase oxide-silicate-carbonate-carbon parental media for lower-mantle diamonds and syngenetic minerals. Consequently, readers will find extensive information on the diamond-parental oxide-silicate-carbonate-carbon melts-solutions that supplement the general features of lower-mantle diamond genesis and the most efficient ultrabasic-basic evolution. The experimental results on physicochemical aspects, combined with analytical mineralogy data, make it possible to create a generalized composition diagram of the diamond-parental melts-solutions, there by completing the mantle-carbonatite concept for the genesis of lower-mantle diamonds and syngenetic minerals. This book addresses the needs of all researchers studying the Earth's deepest structure, super-deep mineral formation including diamonds, and magmatic evolution.
This book presents an overview of recent advances in our understanding of the genesis of diamonds and the associated phases. It is divided into three main parts, starting with an introduction to the analysis of diamond inclusions to infer the formation processes. In turn, the second part of the book presents high-pressure experimental studies in mantle diamond-parental mineral systems with representative multicomponent boundary compositions. The experimental syngenesis phase diagrams provided reveal the physicochemical mechanisms of diamond nucleation and substantiate the mantle-carbonatite concept of the genesis of diamonds and associated phases. Lastly, the book describes the genetic classification of diamond-hosted mineral inclusions and experimentally determined RE "mineral-parental melt" partition coefficients. The physicochemical experimental evidence presented shows the driving forces behind the fractional evolution of the mantle magmas and diamond-parental melts. Given the depth and breadth of its coverage, the book offers researchers essential new insights into the ways diamonds and associated minerals and rocks are naturally created.
In this fascinating book Alter Litvin tells us what life was really like for professional Soviet historians from Lenin to Gorbachev, and assesses the efforts made since 1991 to create a more truthful picture of the turbulent Russian past. Passionate yet fair-minded, this is the first account of the subject to appear in English. Designed primarily for the general reader, it contains much fresh material of specialist interest and an ample up-to-date bibliography.
This book sheds valuable new light on the genetic mineralogy of lower-mantle diamonds and syngenetic minerals. It presents groundbreaking experimental results revealing the melting relations of ultrabasic and basic associations and a physicochemical peritectic mechanism of their evolution. The experimental investigations included here reveal the key multicomponent, multiphase oxide-silicate-carbonate-carbon parental media for lower-mantle diamonds and syngenetic minerals. Consequently, readers will find extensive information on the diamond-parental oxide-silicate-carbonate-carbon melts-solutions that supplement the general features of lower-mantle diamond genesis and the most efficient ultrabasic-basic evolution. The experimental results on physicochemical aspects, combined with analytical mineralogy data, make it possible to create a generalized composition diagram of the diamond-parental melts-solutions, there by completing the mantle-carbonatite concept for the genesis of lower-mantle diamonds and syngenetic minerals. This book addresses the needs of all researchers studying the Earth's deepest structure, super-deep mineral formation including diamonds, and magmatic evolution.
|
You may like...
|