Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
This textbook offers an accessible, modern introduction at undergraduate level to an area known variously as general topology, point-set topology or analytic topology with a particular focus on helping students to build theory for themselves. It is the result of several years of the authors' combined university teaching experience stimulated by sustained interest in advanced mathematical thinking and learning, alongside established research careers in analytic topology. Point-set topology is a discipline that needs relatively little background knowledge, but sufficient determination to grasp ideas precisely and to argue with straight and careful logic. Research and long experience in undergraduate mathematics education suggests that an optimal way to learn such a subject is to teach it to yourself, pro-actively, by guided reading of brief skeleton notes and by doing your own spadework to fill in the details and to flesh out the examples. This text will facilitate such an approach for those learners who opt to do it this way and for those instructors who would like to encourage this so-called 'Moore approach', even for a modest segment of the teaching term or for part of the class. In reality, most students simply do not have the combination of time, background and motivation needed to implement such a plan fully. The accessibility, flexibility and completeness of this text enable it to be used equally effectively for more conventional instructor-led courses. Critically, it furnishes a rich variety of exercises and examples, many of which have specimen solutions, through which to gain in confidence and competence.
Analysis underpins calculus, much as calculus underpins virtually all mathematical sciences. A sound understanding of analysis' results and techniques is therefore valuable for a wide range of disciplines both within mathematics itself and beyond its traditional boundaries. This text seeks to develop such an understanding for undergraduate students on mathematics and mathematically related programmes. Keenly aware of contemporary students' diversity of motivation, background knowledge and time pressures, it consistently strives to blend beneficial aspects of the workbook, the formal teaching text, and the informal and intuitive tutorial discussion. The authors devote ample space and time for development of confidence in handling the fundamental ideas of the topic. They also focus on learning through doing, presenting a comprehensive range of examples and exercises, some worked through in full detail, some supported by sketch solutions and hints, some left open to the reader's initiative. Without undervaluing the absolute necessity of secure logical argument, they legitimise the use of informal, heuristic, even imprecise initial explorations of problems aimed at deciding how to tackle them. In this respect they authors create an atmosphere like that of an apprenticeship, in which the trainee analyst can look over the shoulder of the experienced practitioner.
Complex analysis, more than almost any other undergraduate topic in mathematics, runs the full pure/applied gamut from the most subtle, difficult, and ingenious proofs to the most direct, hands-on, engineering-based applications. This creates challenges for the instructor as much as for the very wide range of students whose various programmes require a secure grasp of complex analysis. Its techniques are indispensable to many, but skill in the use of a mathematical tool is hazardous and fallible without a sound understanding of why and when that tool is the right one to pick up. This kind of understanding develops only by combining careful exploration of ideas, analysis of proofs, and practice across a range of exercises. Integration with Complex Numbers: A Primer on Complex Analysis offers a reader-friendly contemporary balance between idea, proof, and practice, informed by several decades of classroom experience and a seasoned understanding of the backgrounds, motivation, and competing time pressures of today's student cohorts. To achieve its aim of supporting and sustaining such cohorts through those aspects of complex analysis that they encounter in first and second-year study, it also balances competing needs to be self-contained, comprehensive, accessible, and engaging - all in sufficient but not in excessive measures. In particular, it begins where most students are likely to be, and invests the time and effort that are required in order to deliver accessibility and introductory gradualness.
Complex analysis, more than almost any other undergraduate topic in mathematics, runs the full pure/applied gamut from the most subtle, difficult, and ingenious proofs to the most direct, hands-on, engineering-based applications. This creates challenges for the instructor as much as for the very wide range of students whose various programmes require a secure grasp of complex analysis. Its techniques are indispensable to many, but skill in the use of a mathematical tool is hazardous and fallible without a sound understanding of why and when that tool is the right one to pick up. This kind of understanding develops only by combining careful exploration of ideas, analysis of proofs, and practice across a range of exercises. Integration with Complex Numbers: A Primer on Complex Analysis offers a reader-friendly contemporary balance between idea, proof, and practice, informed by several decades of classroom experience and a seasoned understanding of the backgrounds, motivation, and competing time pressures of today's student cohorts. To achieve its aim of supporting and sustaining such cohorts through those aspects of complex analysis that they encounter in first and second-year study, it also balances competing needs to be self-contained, comprehensive, accessible, and engaging - all in sufficient but not in excessive measures. In particular, it begins where most students are likely to be, and invests the time and effort that are required in order to deliver accessibility and introductory gradualness.
This textbook offers an accessible, modern introduction at undergraduate level to an area known variously as general topology, point-set topology or analytic topology with a particular focus on helping students to build theory for themselves. It is the result of several years of the authors' combined university teaching experience stimulated by sustained interest in advanced mathematical thinking and learning, alongside established research careers in analytic topology. Point-set topology is a discipline that needs relatively little background knowledge, but sufficient determination to grasp ideas precisely and to argue with straight and careful logic. Research and long experience in undergraduate mathematics education suggests that an optimal way to learn such a subject is to teach it to yourself, pro-actively, by guided reading of brief skeleton notes and by doing your own spadework to fill in the details and to flesh out the examples. This text will facilitate such an approach for those learners who opt to do it this way and for those instructors who would like to encourage this so-called 'Moore approach', even for a modest segment of the teaching term or for part of the class. In reality, most students simply do not have the combination of time, background and motivation needed to implement such a plan fully. The accessibility, flexibility and completeness of this text enable it to be used equally effectively for more conventional instructor-led courses. Critically, it furnishes a rich variety of exercises and examples, many of which have specimen solutions, through which to gain in confidence and competence.
Analysis underpins calculus, much as calculus underpins virtually all mathematical sciences. A sound understanding of analysis' results and techniques is therefore valuable for a wide range of disciplines both within mathematics itself and beyond its traditional boundaries. This text seeks to develop such an understanding for undergraduate students on mathematics and mathematically related programmes. Keenly aware of contemporary students' diversity of motivation, background knowledge and time pressures, it consistently strives to blend beneficial aspects of the workbook, the formal teaching text, and the informal and intuitive tutorial discussion. The authors devote ample space and time for development of confidence in handling the fundamental ideas of the topic. They also focus on learning through doing, presenting a comprehensive range of examples and exercises, some worked through in full detail, some supported by sketch solutions and hints, some left open to the reader's initiative. Without undervaluing the absolute necessity of secure logical argument, they legitimise the use of informal, heuristic, even imprecise initial explorations of problems aimed at deciding how to tackle them. In this respect they authors create an atmosphere like that of an apprenticeship, in which the trainee analyst can look over the shoulder of the experienced practitioner.
|
You may like...
|