Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
Matroids appear in diverse areas of mathematics, from combinatorics to algebraic topology and geometry. This largely self-contained work provides an intuitive and interdisciplinary treatment of Coxeter matroids, a new and beautiful generalization of matroids which is based on a finite Coxeter group. Key topics and features: * Systematic, clearly written exposition with ample references to current research * Matroids are examined in terms of symmetric and finite reflection groups * Finite reflection groups and Coxeter groups are developed from scratch * The Gelfand-Serganova Theorem is presented, allowing for a geometric interpretation of matroids and Coxeter matroids as convex polytopes with certain symmetry properties * Matroid representations and combinatorial flag varieties are studied in the final chapter * Many exercises throughout * Excellent bibliography and index Accessible to graduate students and research mathematicians alike, Coxeter Matroids can be used as an introductory survey, a graduate course text, or a reference volume.
Matroids appear in diverse areas of mathematics, from combinatorics to algebraic topology and geometry, and "Coxeter Matroids" provides an intuitive and interdisciplinary treatment of their theory. In this text, matroids are examined in terms of symmetric and finite reflection groups; also, symplectic matroids and the more general coxeter matroids are carefully developed. The Gelfand-Serganova theorem, which allows for the geometric interpretation of matroids as convex polytopes with certain symmetry properties, is presented, and in the final chapter, matroid representations and combinatorial flag varieties are discussed. With its excellent bibliography and index and ample references to current research, this work will be useful for graduate students and research mathematicians.
This graduate/advanced undergraduate textbook contains a systematic and elementary treatment of finite groups generated by reflections. The approach is based on fundamental geometric considerations in Coxeter complexes, and emphasizes the intuitive geometric aspects of the theory of reflection groups. Key features include: many important concepts in the proofs are illustrated in simple drawings, which give easy access to the theory; a large number of exercises at various levels of difficulty; some Euclidean geometry is included along with the theory of convex polyhedra; no prerequisites are necessary beyond the basic concepts of linear algebra and group theory; and a good index and bibliography The exposition is directed at advanced undergraduates and first-year graduate students.
|
You may like...
Batman v Superman - Dawn Of Justice…
Ben Affleck, Henry Cavill, …
Blu-ray disc
(16)
|