Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
In recent decades, significant advances in new methodologies like DNA sequencing and high-throughput sequencing have been used to identify microorganisms and monitor their interactions with different environments. Microbial genomics techniques are opening new approaches to microbiology by revealing how microorganisms affect human beings and the environment. This book covers four major areas: 1) Environmental microbial genomics, 2) Microbial genomics in human health, 3) Microbial genomics in crop improvement and plant health protection, and 4) Genome analysis of microbial pathogens. Within these areas, the topics addressed include: microbial genome diversity, evolution, and microbial genome sequencing; bioinformatics and microarray-based genomic technologies; functional genomics of bioremediation of soil and water from organic and inorganic pollutants and carbon management; functional genomics of microbial pathogens and relevant microorganisms; functional genomics of model microorganisms; and applied functional genomics. Given its scope, the book offers a comprehensive source of information on the latest applications of microorganisms and microbial genomics to enhance the sustainability of agriculture and the environment.
In recent decades, significant advances in new methodologies like DNA sequencing and high-throughput sequencing have been used to identify microorganisms and monitor their interactions with different environments. Microbial genomics techniques are opening new approaches to microbiology by revealing how microorganisms affect human beings and the environment. This book covers four major areas: 1) Environmental microbial genomics, 2) Microbial genomics in human health, 3) Microbial genomics in crop improvement and plant health protection, and 4) Genome analysis of microbial pathogens. Within these areas, the topics addressed include: microbial genome diversity, evolution, and microbial genome sequencing; bioinformatics and microarray-based genomic technologies; functional genomics of bioremediation of soil and water from organic and inorganic pollutants and carbon management; functional genomics of microbial pathogens and relevant microorganisms; functional genomics of model microorganisms; and applied functional genomics. Given its scope, the book offers a comprehensive source of information on the latest applications of microorganisms and microbial genomics to enhance the sustainability of agriculture and the environment.
This book is a comprehensive account of recent advances in the endophytic research. It covers recent perspective of endophytic research, molecular diversity, bioprospecting of novel genes using high throughput molecular techniques, and most importantly application of endophytes in practicing sustainable agriculture. Endophytic micro-organisms are mysterious living component associated mutually with plant roots and soil microbes. Various endophytic bacteria have attracted considerable attention for their ability to promote plant growth through direct mechanisms or by acting as biocontrol agents. Endophytes also find use in biocontrol, medicine, agriculture and food industry. This is a useful reading for the student of agriculture, environmental microbiology and biotechnology.
Today, microbiology is a rapidly growing discipline in the life sciences, and the technologies are evolving on a virtually daily basis. Next-generation sequencing technologies have revolutionized microbial analysis, and can help us understand the biology and genomic diversity of various bacterial species with significant impacts on agro-ecosystems. In addition, advances in molecular biology and microbiology techniques hold the potential to improve the productivity and sustainability of agriculture and forestry. This new volume addresses the role of microbial genomics in understanding the living systems that exist in the soil and their interactions with plants, an aspect that is also important for crop improvement. The topics covered focus on a deeper and clearer understanding of how microbes cause diseases, the genome-based development of novel antibacterial agents and vaccines, and the role of microbial genomics in crop improvement and agroforestry. Given its scope, the book offers a valuable resource for researchers and students of agriculture and infectious biology.
Role of Plant Growth Promoting Microorganisms in Sustainable Agriculture and Nanotechnology explores PGPMs (actinomycetes, bacteria, fungi and cyanobacteria) and their multidimensional roles in agriculture, including their increasing applications in sustainable agriculture. In addition to their traditional understanding and applications in agriculture, PGPMs are increasingly known as a source of nano-particles production that are gaining significant interest in their ability to provide more economically, environmentally friendly and safe technologies to crop growers. The book considers new concepts and current developments in plant growth, thus promoting microorganisms research and evaluating its implications for sustainable productivity. Users will find this to be an invaluable resource for researchers in applied microbial biotechnology, soil science, nano-technology of microbial strains, and industry personnel in these areas.
Climate Change and Agricultural Ecosystems explains the causative factors of climate change related to agriculture, soil and plants, and discusses the relevant resulting mitigation process. Agricultural ecosystems include factors from the surrounding areas where agriculture experiences direct or indirect interaction with the plants, animals, and microbes present. Changes in climatic conditions influence all the factors of agricultural ecosystems, which can potentially adversely affect their productivity. This book summarizes the different aspects of vulnerability, adaptation, and amelioration of climate change in respect to plants, crops, soil, and microbes for the sustainability of the agricultural sector and, ultimately, food security for the future. It also focuses on the utilization of information technology for the sustainability of the agricultural sector along with the capacity and adaptability of agricultural societies under climate change. Climate Change and Agricultural Ecosystems incorporates both theoretical and practical aspects, and serves as base line information for future research. This book is a valuable resource for those working in environmental sciences, soil sciences, agricultural microbiology, plant pathology, and agronomy.
PGPR Amelioration in Sustainable Agriculture: Food Security and Environmental Management explores the growth-promoting rhizobacteria (PGPR) that are indigenous to soil and plant rhizosphere. These microorganisms have significant potential as important tools for sustainable agriculture. PGPR enhance the growth of root systems and often control certain plant pathogens. As PGPR amelioration is a fascinating subject, is multidisciplinary in nature, and concerns scientists involved in plant heath and plant protection, this book is an ideal resource that emphasizes the current trends of, and probable future of, PGPR developments. Chapters incorporate both theoretical and practical aspects and may serve as baseline information for future research. This book will be useful to students, teachers and researchers, both in universities and research institutes, especially working in areas of agricultural microbiology, plant pathology and agronomy.
This book is a comprehensive account of recent advances in the endophytic research. It covers recent perspective of endophytic research, molecular diversity, bioprospecting of novel genes using high throughput molecular techniques, and most importantly application of endophytes in practicing sustainable agriculture. Endophytic micro-organisms are mysterious living component associated mutually with plant roots and soil microbes. Various endophytic bacteria have attracted considerable attention for their ability to promote plant growth through direct mechanisms or by acting as biocontrol agents. Endophytes also find use in biocontrol, medicine, agriculture and food industry. This is a useful reading for the student of agriculture, environmental microbiology and biotechnology.
|
You may like...
|