Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 9 of 9 matches in All Departments
A collection of papers edited by four experts in the field, this book sets out to describe the way solar activity is manifested in observations of the solar interior, the photosphere, the chromosphere, the corona and the heliosphere. The 11-year solar activity cycle, more generally known as the sunspot cycle, is a fundamental property of the Sun. This phenomenon is the generation and evolution of magnetic fields in the Sun's convection zone, the photosphere. It is only by the careful enumeration and description of the phenomena and their variations that one can clarify their interdependences. The sunspot cycle has been tracked back about four centuries, and it has been recognized that to make this data set a really useful tool in understanding how the activity cycle works and how it can be predicted, a very careful and detailed effort is needed to generate sunspot numbers. This book deals with this topic, together with several others that present related phenomena that all indicate the physical processes that take place in the Sun and its exterior environment. The reviews in the book also present the latest theoretical and modelling studies that attempt to explain the activity cycle. It remains true, as has been shown in the unexpected characteristics of the first two solar cycles in the 21st century, that predictability remains a serious challenge. Nevertheless, the highly expert and detailed reviews in this book, using the very best solar observations from both ground- and space based telescopes, provide the best possible report on what is known and what is yet to be discovered. Originally published in Space Science Reviews, Vol 186, Issues 1-4, 2014.
The present book provides a contemporary systematic treatment of shock waves in high-temperature collisionless plasmas as are encountered in near Earth space and in Astrophysics. It consists of two parts. Part I develops the complete theory of shocks in dilute hot plasmas under the assumption of absence of collisions among the charged particles when the interaction is mediated solely by the self-consistent electromagnetic fields. Such shocks are naturally magnetised implying that the magnetic field plays an important role in their evolution and dynamics. This part treats subcritical shocks which dissipate flow energy by generating anomalous resistance or viscosity. The main emphasis is, however, on super-critical shocks where the anomalous dissipation is insufficient to retard the upstream flow. These shocks, depending on the direction of the upstream magnetic field, are distinguished as quasi-perpendicular and quasi-parallel shocks which exhibit different behaviours, reflecting particles back upstream and generating high electromagnetic wave intensities. Particle acceleration and turbulence at such shocks become possible and important. Part II treats planetary bow shocks and the famous Heliospheric Termination shock as examples of two applications of the theory developed in part I.
The review articles collected in this volume present a critical assessment of particle acceleration mechanisms and observations from suprathermal particles in the magnetosphere and heliosphere to high-energy cosmic rays, thus covering a range of energies over seventeen orders of magnitude, from 103 eV to 1020 eV. The main themes are observations of accelerated populations from the magnetosphere to extragalactic scales and assessments of the physical processes underlying particle acceleration in different environments (magnetospheres, the solar atmosphere, the heliosphere, supernova remnants, pulsar wind nebulae and relativistic outflows). Several contributions review the status of shock acceleration in different environments and also the role of turbulence in particle acceleration. Observational results are compared with modelling in different parameter regimes. The book concludes with contributions on the status of particle acceleration research and its future perspectives. This volume is aimed at graduate students and researchers active in astrophysics and space science. Previously published in Space Science Reviews journal, Vol. 173 Nos. 1-4, 2012.
A collection of sixteen coordinated reviews on the origins of large-scale magnetic fields in the Universe, this book discusses magnetic fields in all relevant astrophysical contexts, from the interstellar medium to the scales of galaxies and clusters of galaxies. Magnetic fields are described in their very diverse environments, from stellar winds to galactic haloes and astrophysical jets; together with the roles they play in forming the structures and shaping the dynamics of these objects. Both observational evidence and its theoretical interpretations are covered up to the largest scales in the Universe. The authors are all leading scientists in their fields, making this book an authoritative, up-to-date and enduring contribution to astrophysics. This volume is aimed at graduate students and researchers in astrophysics. Previously published in Space Science Reviews journal, Vol. 166/1-4 and Vol. 169/1-4, 2012.
Presents a comprehensive review of physical processes in
astrophysical plasmas.
The review articles collected in this volume present a critical assessment of particle acceleration mechanisms and observations from suprathermal particles in the magnetosphere and heliosphere to high-energy cosmic rays, thus covering a range of energies over seventeen orders of magnitude, from 103 eV to 1020 eV. The main themes are observations of accelerated populations from the magnetosphere to extragalactic scales and assessments of the physical processes underlying particle acceleration in different environments (magnetospheres, the solar atmosphere, the heliosphere, supernova remnants, pulsar wind nebulae and relativistic outflows). Several contributions review the status of shock acceleration in different environments and also the role of turbulence in particle acceleration. Observational results are compared with modelling in different parameter regimes. The book concludes with contributions on the status of particle acceleration research and its future perspectives. This volume is aimed at graduate students and researchers active in astrophysics and space science. Previously published in Space Science Reviews journal, Vol. 173 Nos. 1-4, 2012.
The present book provides a contemporary systematic treatment of shock waves in high-temperature collisionless plasmas as are encountered in near Earth space and in Astrophysics. It consists of two parts. Part I develops the complete theory of shocks in dilute hot plasmas under the assumption of absence of collisions among the charged particles when the interaction is mediated solely by the self-consistent electromagnetic fields. Such shocks are naturally magnetised implying that the magnetic field plays an important role in their evolution and dynamics. This part treats subcritical shocks which dissipate flow energy by generating anomalous resistance or viscosity. The main emphasis is, however, on super-critical shocks where the anomalous dissipation is insufficient to retard the upstream flow. These shocks, depending on the direction of the upstream magnetic field, are distinguished as quasi-perpendicular and quasi-parallel shocks which exhibit different behaviours, reflecting particles back upstream and generating high electromagnetic wave intensities. Particle acceleration and turbulence at such shocks become possible and important. Part II treats planetary bow shocks and the famous Heliospheric Termination shock as examples of two applications of the theory developed in part I.
A collection of sixteen coordinated reviews on the origins of large-scale magnetic fields in the Universe, this book discusses magnetic fields in all relevant astrophysical contexts, from the interstellar medium to the scales of galaxies and clusters of galaxies. Magnetic fields are described in their very diverse environments, from stellar winds to galactic haloes and astrophysical jets; together with the roles they play in forming the structures and shaping the dynamics of these objects. Both observational evidence and its theoretical interpretations are covered up to the largest scales in the Universe. The authors are all leading scientists in their fields, making this book an authoritative, up-to-date and enduring contribution to astrophysics. This volume is aimed at graduate students and researchers in astrophysics. Previously published in Space Science Reviews journal, Vol. 166/1-4 and Vol. 169/1-4, 2012.
The Ulysses observations have charted the heliosphere around the minimum in the 11 year cycle of solar activity, revealing the large scale properties of the heliospheric medium and its micro-scale characteristics. This book presents for the first time, a comprehensive review of the results of the Ulysses mission.The first chapter provides an overview of the region, introducing the heliosphere prior to the Ulysses mission, and the objectives and characteristics of the mission itself. Subsequent chapters discuss in detail specific areas of the heliosphere, including the solar wind, large and small scale features, cosmic rays and energetic particles, and the observations of interstellar gas and cosmic dust. Each of these chapters is written by members of the Ulysses science team, concentrating on their own areas of expertise, and is written in a clear and accessible way.In this book, the authors aim to summarise our understanding of the heliosphere near solar minimum and to provide the basis for understanding the more complex state of the heliosphere around solar maximum, which will be observed during the next phase of the Ulysses mission.
|
You may like...
Discovering Daniel - Finding Our Hope In…
Amir Tsarfati, Rick Yohn
Paperback
|