Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
This volume is dedicated to Rien Kaashoek on the occasion of his 80th birthday and celebrates his many contributions to the field of operator theory during more than fifty years. In the first part of the volume, biographical information and personal accounts on the life of Rien Kaashoek are presented. Eighteen research papers by friends and colleagues of Rien Kaashoek are included in the second part. Contributions by J. Agler, Z.A. Lykova, N.J. Young, J.A. Ball, G.J. Groenewald, S. ter Horst, H. Bart, T. Ehrhardt, B. Silbermann, J.M. Bogoya, S.M. Grudsky, I.S. Malysheva, A. Boettcher, E. Wegert, Z. Zhou, Y. Eidelman, I. Haimovici, A.E. Frazho, A.C.M. Ran, B. Fritzsche, B. Kirstein, C.Madler, J. J. Jaftha, D.B. Janse van Rensburg, P. Junghanns, R. Kaiser, J. Nemcova, M. Petreczky, J.H. van Schuppen, L. Plevnik, P. Semrl, A. Sakhnovich, F.-O. Speck, S. Sremac, H.J. Woerdeman, H. Wolkowicz and N. Vasilevski.
The present book deals with factorization problems for matrix and operator functions. The problems originate from, or are motivated by, the theory of non-selfadjoint operators, the theory of matrix polynomials, mathematical systems and control theory, the theory of Riccati equations, inversion of convolution operators, theory of job scheduling in operations research. The book systematically employs a geometric principle of factorization which has its origins in the state space theory of linear input-output systems and in the theory of characteristic operator functions. This principle allows one to deal with different factorizations from one point of view. Covered are canonical factorization, minimal and non-minimal factorizations, pseudo-canonical factorization, and various types of degree one factorization. Considerable attention is given to the matter of stability of factorization which in terms of the state space method involves stability of invariant subspaces.invariant subspaces.
The present book deals with canonical factorization of matrix and operator functions that appear in state space form or that can be transformed into such a form. A unified geometric approach is used. The main results are all expressed explicitly in terms of matrices or operators, which are parameters of the state space representation. The applications concern different classes of convolution equations. A large part the book deals with rational matrix functions only.
This volume is devoted to Joseph A. (Joe) Ball's contributions to operator theory and its applications and in celebration of his seventieth birthday. Joe Ball's career spans over four and a half decades, starting with his work on model theory and related topics for non-contractions and operators on multiply connected domains. Later on, more applied operator theory themes appeared in his work, involving factorization and interpolation for operator-valued functions, with extensive applications in system and control theory. He has worked on nonlinear control, time-varying systems and, more recently, on multidimensional systems and noncommutative H -theory on the unit ball and polydisk, and more general domains, and these are only the main themes in his vast oeuvre. Fourteen research papers constitute the core of this volume, written by mathematicians who have collaborated with Joe or have been influenced by his vast mathematical work. A curriculum vitae, a publications list and a list of Joe Ball's PhD students are included in this volume, as well as personal reminiscences by colleagues and friends. Contributions by Yu. M. Arlinskii, S. Hassi, M. Augat, J. W. Helton, I. Klep, S. McCullough, S. Balasubramanian, U. Wijesooriya, N. Cohen, Q. Fang, S. Gorai, J. Sarkar, G. J. Groenewald, S. ter Horst, J. Jaftha, A. C. M. Ran, M.A. Kaashoek, F. van Schagen, A. Kheifets, Z. A. Lykova, N. J. Young, A. E. Ajibo, R. T. W. Martin, A. Ramanantoanina, M.-J. Y. Ou, H. J. Woerdeman, A. van der Schaft, A. Tannenbaum, T. T. Georgiou, J. O. Deasy and L. Norton.
This book provides an introduction to the theory of linear systems and control for students in business mathematics, econometrics, computer science, and engineering. The focus is on discrete time systems, which are the most relevant in business applications, as opposed to continuous time systems, requiring less mathematical preliminaries. The subjects treated are among the central topics of deterministic linear system theory: controllability, observability, realization theory, stability and stabilization by feedback, LQ-optimal control theory. Kalman filtering and LQC-control of stochastic systems are also discussed, as are modeling, time series analysis and model specification, along with model validation. This second edition has been updated and slightly expanded. In addition, supplementary material containing the exercises is now available on the Springer Link's book website.
|
You may like...
|